350 rub
Journal Electromagnetic Waves and Electronic Systems №9 for 2009 г.
Article in number:
New Class of Probabilistic Weight Functions in Digital Signal and Image Processing
Authors:
V. F. Kravchenko, O. V. Kravchenko, A. R. Safin, D. V. Churikov
Abstract:
In this paper for the first time new designs of weight functions (WF) witch constructed on basis of the probability Kravchenko distributions in respect to problems of digital signal and image processing are considered and proved. For research of WF we used the following modified physical characteristics: relative position of spectral density function (SDF) first zero, relative SDF width on level -6 dB, coherent amplification, the equivalent noise band, maximum level of side lobes, incidental amplitude modulation, maximum conversion loss. Time and frequency distributions of new probabilistic weight functions are also research. The orthogonal wavevlets on basis of new weight functions are constructed. The offered wavevlets and their foundation in the class of the Riesz basis is spent. Numerical experiments show that the new wavelets are better than Meyer wavelet. Analytical wavelet is defined by spectral modulation of weight functions. The basic requirement when constructing analytical wavelet is good enough localization both in time and in frequency areas. This transformation does not influence width of the support interval in the time area. An application of the Kravchenko-Wigner transformations witch based on probability WF in quantum mechanic and optics are considered. A great number of numerical experiments carried out and also an analysis of physical results show efficiency of the suggested and proved new probabilistic weight functions in various problems of digital signal and image processing, radio physics, radar, radio vision, quantum mechanics. The investigations were supported by grant NSh-5708.2008.9.
Pages: 31-44
References
  1. Кравченко В.Ф., Кравченко О.В., Сафин А.Р. Атомарные функции в теории вероятностей и случайных процессов // Успехи современной радиоэлектроники. 2009. №5. С. 23-38.
  2. Рвачев В.Л. Теория R-функций и некоторые ее приложения. Киев: Наукова Думка. 1982.
  3. Кравченко В.Ф.Лекции по теории атомарных функций и некоторым их приложениям. М.: Радиотехника. 2003.
  4. Зелкин Е.Г., Кравченко В.Ф., Гусевский В.И. Конструктивные методы аппроксимации в теории антенн. М.: Сайнс-Пресс, 2005.
  5. Кравченко В.Ф., Рвачёв В.Л. Алгебра логики, атомарные функции и вейвлеты в физических приложениях. М.: Физматлит. 2006.
  6. Цифровая обработка сигналов и изображений в радиофизических приложениях / под ред. В.Ф. Кравченко. М.: Физматлит. 2007.
  7. Волосюк В.К., Кравченко В.Ф. Статистическая теория радиотехнических систем дистанционного зондирования и радиолокации / под ред. В.Ф. Кравченко. M.: Физматлит, 2008.
  8. Кравченко В.Ф., Лабунько О.С., Лерер А.М., Синявский Г.П. Вычислительные методы в современной радиофизике / под ред. В.Ф.Кравченко. М.: Физматлит. 2009.
  9. Шляйх В.П.Квантовая оптика в фазовом пространстве / пер. с англ. под ред. В.П.Яковлева. М.: Физматлит. 2005.
  10. Auger F., Flandrin P., Goncalves P., and Lemoine O., Time-frequency toolbox reference guide. Rice Univ, Houstown. 2005.
  11. Kravchenko, V.F., Churikov, D.V. A new class of orthogonal kravchenko WA-system functions  // Telecommunications and Radio Engineering. 2009. V. 68. No. 8. P. 649-666.
  12. Gomeztagle F., Kravchenko V.F., and Ponomaryov V.I.Super-resolution method based on wavelet atomic functions in images and video sequences // Telecommunications and Radio Engineering. 2009.V. 68. No. 9. P. 747-761.
  13. Kravchenko V.F., Churikov D.V. Digital signal and image processing on basis of orthogonal Kravchenko wavelets // Proceedings of International Conference "DAYS on DIFFRACTION". St.Petersburg, Russia. May 26-29 2009.P. 53-54.
  14. Kravchenko V.F., Churikov D.V. A new class of orthogonal Kravchenko wavelets // Proceedings of International Conference RVK-08 and MMWP-08. Växjö, Sweden. June 9-13 2008. P. 39-43.
  15. Кравченко В.Ф., Юрин А.В.Применение теории R-функций и вейвлетов к решению краевых задач эллиптического типа // Электромагнитные волны и электронные системы. 2009. Т.14. №1. С.4-39.