350 rub
Journal Electromagnetic Waves and Electronic Systems №11 for 2009 г.
Article in number:
Frequency Selective Surfaces with Multilayer Magneto-Dielectric Covers
Keywords:
frequency selective surfaces
multifunctional antenna-s radomes
integral equation method
moment method
multilayer magnetodielectric covers
radar scattering matrix
dyadic Green-s function
Authors:
A. O. Kasyanov, V. A. Obukhovets
Abstract:
Mathematical model of multilayered printed frequency selective surfaces with dielectric covers is presented in this paper. The model is built on the suggestion of array infinity and perfect conductivity of microstrip elements. Such printed structures can be used as frequency selective surface and as covers with controllable characteristics (for example tunable filters, adaptive radar cover, electronically switched polarizers). Full-wave analysis is executed by the integral equation method. The numerical solution of an integral equation has been obtained by Galerkin-s method. Unknown distribution of surface magnetic currents has been approximated by roof-top basic functions. The generalized scattering matrix method was used for simulation of multilayered printed frequency selective surface. The paper presents the compound algorithm which combines the integral equation method with the method of generalized scattering matrix. A lot of numerical examples are presented proving the algorithm effectiveness. By means of this model there were synthesized multilayer frequency selective surface as periodic arrays of the printed elements, which have arbitrary shape of reradiators. It is known, that the printed elements of special shape ensure, as rejecting and as transacting of electromagnetic waves in the given frequencies, and have neglected angular sensitivity. The results of constructive synthesis of printed frequency selective surfaces as rejecting or transmitting filters, which have neglected angular sensitivity, are represented in paper. Such an algorithm is rather flexible and multiple repeats the basic problem solution. It makes the procedure of computer code preparing much more effective and do not require to change the problem decision itself.
Pages: 29-38
References
- Munk B.A. Frequency Selective Surfaces: Theory and Design // John Wiley. US. 2000.
- Кобак В.О. Радиолокационные отражатели. М.: Сов. радио. 1975.
- Касьянов А.О., Семенихин А.И., Ильин И.В. Поляризационные и импедансные свойства микрополосковых решеток с управляемыми нагрузками // Рассеяние электромагнитных волн. Таганрог. 1991. Вып. 8. С. 113 - 119.
- Шестопалов В.П., Кириленко А.А., Масалов С.А., Сиренко Ю.К. Резонансное рассеяние волн. T.1. Дифракционные решетки. Киев: Наукова думка. 1986.
- Васильев Е.Н., Ильинский А.С., Свешников А.Г. Численные методы решения задач дифракции на локальных неоднородностях // Вычислительные методы и программирование. М.: МГУ. 1975. Вып. 24. С. 3 - 13.
- Васильев Е.Н. Возбуждение тел вращения. М.: Радио и связь. 1987.
- Касьянов А.О., Обуховец В.А. Управление токами в микрополосковой антенной решетке с нагруженными элементами // Радиотехника. 1995. № 12. С. 32-36.
- Rubin B.J., Bertoni H.L. Reflection from a periodically perforated plane using a subsectional current approximation // IEEE Trans. 1983. Vol. AP-31. Nо. 6. P.829 - 836.
- Galka M., Edenhofer P. A novel concept of sandwich-loaded grid for antennas in satellite communications. U.R.S.I. Int. Symp. EM Theory. Budapest. Aug. 1986. Pt. B, P. 393 - 395.
- Касьянов А.О., Обуховец В.А.Методика определения углов «ослепления» микрополосковой ФАР на основе решения дифракционных задач // Радиотехника. 2001. № 7. C. 114 - 118.
- Амитей Н., Галиндо В., By Ч. Теория и анализ фазированных антенных решеток. М.: Мир. 1974.
- Lee S.-W. Scattering by Dielectric-Loaded Screen // IEEE TAP. September. 1971. V.19. P. 656 - 665.
- Миттра Р. Методы анализа плоских частотно-избирательных решеток: Обзор // ТИИЭР, 1988, Т. 76. № 12. C. 46 ? 69.