350 rub
Journal Dynamics of Complex Systems - XXI century №4 for 2016 г.
Article in number:
Control algorithms process manipulator waterjet cutting oil, taking into account the specifics of a running process
Authors:
A.A. Kobzev - Dr. Sc. (Eng.), Professor, Head of Department «Mechatronics and Electronic Systems of Vehicle», Vladimir State University named after A.&N. Stoletovs E-mail: kobzev42@mail.ru A.V. Lekareva - Post-graduate Student, Department «Mechatronics and Electronic Systems of Vehicle», Vladimir State University named after A.&N. Stoletovs E-mail: tasya671@rambler.ru A.A. Mahfuz - Post-graduate Student, Department «Mechatronics and Electronic Systems of Vehicle», Vladimir State University named after A.&N. Stoletovs E-mail: ababha@yahoo.com
Abstract:
Analysis and accounting features of the process implemented by specialized robotic systems, is an essential step in the design of control systems. In this paper we consider the problem of automating the process of waterjet cutting of pipelines and storage tanks with the use of mobile robot. Management challenge is the need to implement motion control actuator technology manipulator trajectory corresponding to a given form of cut pieces. The process of waterjet cutting by the control system requires compliance with two con-ditions: 1) perpendicular to the jet with respect to the cutting surface. To assess the jet regarding the location of the pipe surface at the cutting point is introduced complex index H; 2) stabilization of the distance from the outlet of the nozzle to the cutting surface. There are the following features of management of the organization: 1) automatic control system robotic system consists of two series-connected systems operating in conditions of disturbances from the external environment and the object - a mobile control system and robot control system technology. 2) The adjustable parameters are: the coordinates of the cutting edge gidroreza conveyed the technological trajectory of the cutting surface; the distance from the nozzle exit gidroreza to the cut surface. Errors trajectory movement of the actuator defines a vector process manipulator outputs errors to the starting point and errors directly moving the head gidroreza; 3) movement of the mobile robot to the target position is characterized by disturbances on the part of the terrain; 4) the accuracy of the output of the mobile robot to the target position for HM limited. 5) the relative position of the TM and the cutting surface is characterized by uncertainty in the small. Generalized technological manipulators control algorithm taking into account the specifics of the process implemented includes the following procedures: 1) initial data input to output robotic system from the current point to the position of technical operations; 2) the implementation of the transport robot from the starting point to the cutting position. The basis of the algorithm output of the actuator to the target point along the normal to the cutting surface is the trajectory control method for the evaluation function 3) determination of the actual coordinates output to the starting point of technological operations; 4) approval of the coordinate axes systems transport robot base and the longitudinal axis of the cutting object. To ensure alignment of coordinate systems and object manipulator process of cutting, as well as to determine the actual coordinates of the surface in the space of a cutting arrangement applies developed search-analytical algorithm - «Method of two sections». It is based on searching movements with the control endpoint to process the surface of the fixation of linear and angular deviations of the coordinate axes in the plane and space; 5) Input the initial data for waterjet cutting operation; 6) movement of the technological trajectory and implementation miscoordinate correction. Algorithm stabilize the complex index of H based on the application of the principle of differential forks in conjunction with simultaneous control of boom movements. The purpose of the application miscoordinate correction is to increase the accuracy of the DUT manipulator motion for a predetermined cutting path. Deviation from the actual calculated trajectory is considered as an additional, unspecified disturbance that countered by introducing an additional control Δg2, Δg3, Δg4 on generalized coordinates q2, q3, q4. Management is based on the provisions of the modified fourth form invariance. During the study, the work to adapt the circuit was considered when driving on typical technological trajectories. This miscoordinate correction ensured by the introduction of additional components in the already formed the control action. The algorithms presented in this paper, can be used as a basis for the implementation of the loop control waterjet cutting technology arm under the ambient conditions of uncertainty and cutting surfaces. Technical realization of the considered algorithms allow information-measuring system on the principle of differential plug. Possible adaptation, working environment characterized by uncertainty presented algorithm to other technological objects and operations.
Pages: 34-40
References

 

  1. Arkhipov A.N., Kobzev A.A., Lekareva A.V., Makhfuz A.A., Petukhov E.N. Analiz robotizacii processa gidrorezanija nefteprovodov // Sovremennye problemy nauki i obrazovanija. 2014. № 6. URL = http://www.science-education.ru/120-15697 (6.12.2016).
  2. Kobzev A.A., Makhfuz A.A., Lekareva A.V. Obosnovanie i vybor kinematicheskojj struktury tekhnologicheskogo manipuljatora gidrorezanija nefteprovodov // Fundamentalnye issledovanija. 2016. № 10-1. S. 53−61. URL = http://fundamental-research.ru/ru/article/view-id=40808 (01.12.2016).
  3. Arkhipov A.N., Kobzev A.A., Eropova E.V., Lekareva A.V., Makhfuz A.A. Soglasovanie osejj obekta i manipuljatora pri gidrorezanii nefteprovodov // Fundamentalnye issledovanija. 2015. № 2. S. 5329−5334. URL = www.rae.ru/fs/?section= content&op=show_article&article_id=10007612 (6.12.2016).
  4. Kobzev A.A., Lekareva A.V. Soglasovanie osejj mobilnogo tekhnologicheskogo robota i obekta manipulirovanija // Oboronnaja tekhnika. 2015. № 11-12. S. 201−205.
  5. Kobzev A.A. Korrekcija programmnogo dvizhenija v sistemakh upravlenija sborochnym robotom // Izvestija VUZov. Ser. Priborostroenie. 1992. № 3-4. S. 15−20.
  6. Novoselov B.V., Gorokhov JU.S., Kobzev A.A., SHHitov A.I. Avtomaty-nastrojjshhiki sledjashhikh sistem / Pod red. B.G. Novoselova. M.: EHnergija. 1975. 264 s.
  7. Kobzev A.A., Novikova N.A., Lekareva A.V., Makhfuz A.A. Issledovanie algoritmov dinamicheskojj korrekcii dvizhenija v robototekhnicheskikh sistemakh // Sovremennye problemy nauki i obrazovanija. 2014. № 3. URL = http://www.science-education.ru/ru/article/view-id=13573 (01.12.2016).
  8. Kobzev A.A., Novikova N.A., Lekareva A.V., Makhfuz A.A. Analiz algoritmov korrekcii programmnojj traektorii v ustrojjstve formirovanija upravljajushhego vozdejjstvija dlja privodov robototekhnicheskikh sistem // Sovremennye problemy nauki i obrazovanija. 2014. № 6. URL = http://www.science-education.ru/ru/article/view-id=15702 (01.12.2016).
  9. Kobzev A.A., Novikova N.A., Lekareva A.V. Issledovanie algoritmov adaptacii upravljajushhego vozdejjstvija dlja privodov robototekhnicheskikh sistem s pomoshhju simuljatora mezhkoordinatnykh peremeshhenijj // Izvestija VUZov. Ser. EHlektromekhanika. 2015. № 3. S. 50−55.