350 rub
Journal Biomedical Radioelectronics №7 for 2025 г.
Article in number:
Current Approaches to Quantitative Assessment of SPECT for Therapeutic Radionuclides
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202507-07
UDC: 615.849:539.16.08:616-052
Authors:

E.E. Anokina1, A.V. Likhacheva2, L.A. Chipiga3

1 National Medical Research Center of Oncology n.a. N.N. Petrov (St. Petersburg, Russia)
2,3 Saint-Petersburg Research Institute of Radiation Hygiene n.a. Professor P.V. Ramzaev (Saint-Petersburg, Russia)
3 The City Hospital No 40 of the Kurortny District (Saint-Petersburg, Russia)
3 A. Granov Russian Scientific Center of Radiology and Surgical Technologies (Saint-Petersburg, Russia)
3 Almazov National Medical Research Centre (Saint-Petersburg, Russia)
1 ekaterinaanokina@yandex.ru, 2 nastya.petryakova@gmail.com, 3 larisa.chipiga@gmail.com

Abstract:

Radionuclide therapy requires high accuracy in the quantitative assessment of radionuclide activity for effective planning and monitoring of cancer treatment. One of the key evaluation methods is single-photon emission computed tomography (SPECT), which makes it possible to visualize the distribution of radiopharmaceuticals in the body. Accurate determination of activity allows for better prediction of absorbed doses, leading to safer and more effective treatment protocols. However, the accuracy of quantitative activity assessment in SPECT studies is limited by the effects of gamma-ray scattering, radiation attenuation, the partial volume effect, and collimator imperfections.

The aim of this study was to summarize the literature data on factors influencing the accuracy of quantitative assessment in SPECT in order to identify optimal settings of SPECT scanners, scanning protocols, and image reconstruction techniques for imaging during radionuclide therapy with different radionuclides. Particular attention was paid to the use of volume-dependent calibration factors and phantom measurements to improve reliability under clinical conditions.

As a result of the study, it was demonstrated that accuracy of quantitative analysis can be significantly improved by applying iterative reconstruction methods with collimator response compensation and multi-window scatter correction. The use of phantom models and calibrations with calibration factors reduces errors in the assessment of radionuclide activity. The practical significance of the results lies in improving the reliability of dosimetry calculations in radionuclide therapy, which contributes to greater treatment effectiveness and reduces the risk of complications associated with patient over- or underexposure.

Pages: 64-75
For citation

Anokina E.E., Likhacheva A.V., Chipiga L.A. Current Approaches to Quantitative Assessment of SPECT for Therapeutic Radionuclides. Biomedicine Radioengineering. 2025. V. 28. № 7. P. 64–75. DOI: https:// doi.org/10.18127/ j15604136-202507-07 (In Russian)

References
  1. Benabdallah N. et al. Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics. 2021. V. 11. № 20. P. 9721.
  2. Ocak M., Toklu T., Demirci E., Selcuk N., Kabasakal L. Post-therapy imaging of 225Ac-DOTATATE treatment in a patient with recurrent neuroendocrine tumor. Eur. J. Nucl. Med. Mol. Imaging. 2020. V. 47. P. 2711–2.
  3. Chernyaev A.P. i dr. Radionuklidnye tekhnologii v medicine. Naukoemkie tekhnologii. 2015. T. 16. № 7. S. 65–74 (In Russian).
  4. Robertson A.K.H., Ramogida C.F., Rodriguez-Rodriguez C., Blinder S., Kunz P., Sossi V. et al. Multi-isotope SPECT imaging of the 225Ac decay chain: feasibility studies. Phys. Med. Biol. 2017. V. 62. P. 4406–20.
  5. Yong D., Angel C., Mohammadreza Z., Anders J., Rebecca K., Eleni L. et al. Development of Alpha-emitting radioembolization for Hepatocellular Carcinoma: Longitudinal Monitoring of Actinium-225’s Daughters Through SPECT Imaging. Res Sq. 2021.
  6. Kadrmas D.J., Frey E.C., Karimi S.S. et al. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys. Med. Biol. 1998. V. 43(4). P. 857–873.
  7. Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Phys. Med. Biol. 2010. V. 55(8). P. 2365–2398.
  8. Soret M., Bacharach S.L., Buvat I. Partial-volume effect in PET tumor imaging. Journal of nuclear medicine. 2007. V. 48. № 6. P. 932–945.
  9. Dewaraja Y., Sjögreen-Gleisner K. Dosimetry for radio pharma ceutical.
  10. Obespechenie i kontrol' kachestva issledovanij v radionuklidnoj diagnostike: Metodicheskie rekomendacii. M.; SPb.: Izd-vo RHGA, 2023. 110 s. (In Russian).
  11. Dewaraja Y.K., Frey E.C., Sgouros G., Brill A.B., Roberson P., Zanzonico P.B. et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J. Nucl. Med. 2012. V. 53(8). P. 1310–1325.
  12. Ramonaheng K., van Staden J. A., du Raan H. The effect of calibration factors and recovery coefficients on 177Lu SPECT activity quantification accuracy: a Monte Carlo study. EJNMMI physics. 2021. V. 8. № 1. P. 27.
  13. Price E. et al. Improving molecular radiotherapy dosimetry using anthropomorphic calibration. Physica Medica. 2019. V. 58. P. 40–46.
  14. Tran-Gia J., Schlögl S., Lassmann M. Design and fabrication of kidney phantoms for internal radiation dosimetry using 3D printing technology. Journal of Nuclear Medicine. 2016. V. 57. № 12. P. 1998–2005.
  15. Rahman M.A., Laforest R., Jha A.K. A List-Mode OSEM-Based Attenuation and Scatter Compensation Method for SPECT. Proc IEEE Int Symp Biomed Imaging. 2020. P. 646–50.
  16. Tran-Gia J., Lassmann M. Optimizing image quantification for 177Lu SPECT/CT based on a 3D printed 2-compartment kidney phantom. J. Nucl. Med. 2018. V. 59(4). P. 616–624.
  17. Ellis S., Mallia A., McGinnity C.J., Cook G.J.R., Reader A.J. Multi-tracer guided PET image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2018. V. 2. P. 499–509.
  18. Rahmim A., Qi J., Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med. Phys. 2013. V. 40. P. 064301.
  19. Wang G., Qi J. PET image reconstruction using kernel method. IEEE Transactions on Medical Imaging. 2015. V. 34. P. 61–71.
  20. Frey E.C., Tsui B.M. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. 1996 IEEE Nuclear Science Symposium. Conference Record. Anaheim. CA. USA. 1996. V. 2. P. 1082–1086.
  21. Rousset O. et al. Partial volume correction strategies in PET. PET clinics. 2007. V. 2. № 2. P. 235–249.
  22. Erlandsson K. et al. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Physics in Medicine & Biology. 2012. V. 57. № 21. P. R119.
  23. 177-Lu EARL Quantitative SPECT, European Association of Nuclear Medicine I Schmalzhofgasse 26. 1060 Vienna I Austria. https://earl.eanm.org/177lu-spect-ct/
  24. Ritt P., Vija H., Hornegger J., Kuwert T. Absolute quantification in SPECT. Eur. J. Nucl. Med. Mol. Imaging. 2011. V. 38. Suppl 1. P. S69-77.
  25. Dewaraja Y. K. et al. MIRD pamphlet no. 24: guidelines for quantitative 131I SPECT in dosimetry applications. Journal of Nuclear Medicine. 2013. V. 54. № 12. P. 2182–2188.
  26. Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Physics in Medicine & Biology. 2010. V. 55. № 8. P. 2365.
  27. Gear J. I. et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. European journal of nuclear medicine and molecular imaging. 2018. V. 45. P. 2456–2474.
  28. Dewaraja Y.K. et al. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. Journal of Nuclear Medicine. 2012. V. 53. № 8. P. 1310–1325.
  29. Chipiga L., Bernhardsson C. Patient doses in computed tomography examinations in two regions of the Russian Federation. Radiation protection dosimetry. 2016. V. 169. № 1–4. P. 240–244.
  30. Chipiga L.A. i dr. Ocenka koefficientov perekhoda ot proizvedeniya dozy na dlinu skanirovaniya k effektivnoj doze dlya KT vsego tela putem fantomnyh eksperimentov. Medicinskaya fizika. 2016. № 4. S. 55–62 (In Russian).
  31. Chipiga L.A. Optimizaciya radiacionnoj zashchity pacientov pri provedenii diagnosticheskih issledovanij metodom pozitronno-emissionnoj tomografii: Avtoref. dis. ... kand. tekhn. nauk SPb. 2018. 24 s. (In Russian).
  32. Tran-Gia J., Lassmann M. Optimizing image quantification for 177Lu SPECT/CT based on a 3D printed 2-compartment kidney phantom. Journal of Nuclear Medicine. 2018. V. 59. № 4. P. 616–624.
  33. Finocchiaro D. et al. Partial volume effect of SPECT images in PRRT with 177Lu labelled somatostatin analogues: a practical solution. Physica Medica. 2019. V. 57. P. 153–159.
  34. Lihacheva A.V., Chipiga L.A., Vasil'eva V.N., Vazhenina D.A., Suhov V.Yu., Krzhivickij P.I., Daricheva E.P. Ocenka chuvstvitel'nosti OFEKT/KT-sistem pri skanirovanii 225Ac. Biomedicinskaya radioelektronika. 2025. T. 28. № 3. S. 5−14 (In Russian).
  35. Tran-Gia J., Lassmann M. Optimizing Image Quantification for 177Lu SPECT/CT Based on a 3D Printed 2-Compartment Kidney Phantom. J. Nucl. Med. 2018. V. 59. P. 616–24.
  36. Robinson A.P., Tipping J., Cullen D.M., Hamilton D., Brown R., Flynn A. et al. Organ-specific SPECT activity calibration using 3D printed phantoms for molecular radiotherapy dosimetry. EJNMMI Phys. 2016. V. 3. P. 12.
Date of receipt: 12.09.2025
Approved after review: 26.09.2025
Accepted for publication: 10.11.2025