350 rub
Journal Biomedical Radioelectronics №6 for 2025 г.
Article in number:
Field-effect transistor-based biosensor: new opportunities in diagnostics
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202506-07
UDC: 57.08
Authors:

V.M. Generalov1, A.A. Cheremiskina2, M.V. Kruchinina3, A.V. Gluhov4, G.A. Buryak5, A.S. Safatov6

1,2,5,6 State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor (Koltsovo, Novosibirsk Region, Russia)
3 Research Institute of Therapy and Preventive Medicine – Branch of the Federal State Budgetary Institution «Federal Research Center Institute of Cytology and Genetics SB RAS» (Novosibirsk, Russia)
4 Novosibirsk Plant of Semiconductor Devices «Vostok» (Novosibirsk, Russia)
1 general@vector.nsc.ru, 2 cheremiskina_aa@vector.nsc.ru, 3 kruchmargo@yandex.ru, 4 glwav@yandex.ru, 5 buryak@vector.nsc.ru, 6 safatov@vector.nsc.ru

Abstract:

Problem statement. The recently concluded COVID-19 pandemic (2020–2023) has shown the need to create fast and effective methods for laboratory diagnosis of viruses that could analyze a large number of samples in a short period of time. In addition to medicine, such methods are important for scientific and environmental research, environmental monitoring, etc. Modern advances in electronics and biology have made it possible to develop a new promising method for detecting viruses, as well as other biological molecules – a biosensor based on a silicon field-effect transistor. With its help, it is possible to conduct real-time analysis with high sensitivity and selectivity. It was found that the detection time is 200–300 seconds, and the sensitivity is 103–104 viral particles per ml. Also, an important part of the detection method using a biosensor is the recording device. It ensures that the target signal is detected from the background in order to prevent the appearance of a false positive or false negative result.

Goal. This work was carried out in order to develop the designs and principles of operation of the biosensor and the corresponding recording device using the example of protein detection.

Results. An original biosensor design is presented, aimed at facilitating its use in analysis. The principle of software development for obtaining a target signal in the detection process is described.

The practical significance of the work lies in the possibility of familiarizing the reader with a biosensor based on a silicon nanowire field effect transistor, studying existing achievements, as well as unresolved issues in this field of research.

Pages: 65-72
For citation

Generalov V.M., Cheremiskina A.A., Kruchinina M.V., Gluhov A.V., Buryak G.A., Safatov A.S. Field-effect transistor-based biosensor: new opportunities in diagnostics. Biomedicine Radioengineering. 2025. V. 28. № 6. P. 65–72. DOI: https://doi.org/10.18127/ j15604136-202506-07 (In Russian)

References
  1. WHO Director-Generals opening remarks at the media briefing on Covid-1919 11 march 2020 g. URL: https://www.who.int/ru/dg/ speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-Covid-19---11-march-2020 (data obrashheniya: 29.08.2024).
  2. Bergveld P. Development of an ion sensitive solid-state device for neurophysiological measurement. IEEE Transistors. 1970. V. 17. № 10. P. 70–73.
  3. Aksenova E.I., Kamy`nina N.N., Maklakova Yu.A. Biosensorny`e sistemy` v medicine: e`kspertny`j obzor. M.: GBU «NIIOZMM DZM». 2020. 20 s.
  4. Burunkova Yu.E`., Samujlova E.O. Sensorny`e sistemy` i materialy`. SPb.: Universitet ITMO. 2023. 117 s.
  5. Ivanov Y.D., Goldaeva K.V., Malsagova K.A., Pleshakova T.O., Galiullin R.A., Popov V.P., Kushlinskii N.E., Alferov A.A., Enikeev D.V., Potoldykova N.V., Archakov A.I. Nanoribbon biosensor in the detection of miRNAs associated with colorectal cancer. Micromachines (Basel). 2021. V. 12. № 12. P. 1581.
  6. Mousavian Z., Fahimi-Kashani E., Nafisi V., Fahimi-Kashani N. Recent advances in development of biosensors for monitoring of airborne microorganisms. Iran. J. Biotechnol. 2024. V. 22. № 2. P. e3722.
  7. Hu J., Li Y., Zhang X., Wang Y., Zhang J., Yan J., Li J., Zhang Z., Yin H., Wei Q., Jiang Q., Wei S., Zhang Q. Ultrasensitive silicon na­nowire biosensor with modulated threshold voltages and ultra-small diameter for early kidney failure biomarker cystatin C. Biosensors. 2023. V. 13. № 6. P. 645.
  8. Kim E.R., Joe C., Mitchell R.J., Gu M.B. Biosensors for healthcare: current and future perspectives. Trends Biotechnol. 2023. V. 41. № 3. P. 374–395.
  9. Malsagova K.A., Popov V. P., Kupriyanov I.N., Pleshakova T.O., Galiullin R.A., Kozlov A. F., Shumov I.D., Larionov D.I., Tikhonen- ko F.V., Kapustina S.I., Ziborov V.S., Petrov O.F., Gadzhieva O.A., Bashiryan B.A., Shimansky V.N., Archakov A.I., Ivanov Y.D. Raman spectroscopy-based quality control of «Silicon-on-Insulator» nanowire chips for the detection of brain cancer-associated microRNA in plasma. Sensors (Basel). 2021. V. 21. № 4. P. 1333.
  10. Dmitrienko E., Naumova O., Fomin B., Kupryushkin M., Volkova A., Amirkhanov N., Semenov D., Pyshnaya I., Pyshnyi D. Surface modification of SOIFET sensors for label-free and specific detection of short RNA analyte. Nanomedicine. 2016. V. 11. № 16. Р. 2073–2082.
  11. Park I., Lim J., You S., Hwang M.T., Kwon J., Koprowski K., Kim S., Heredia J., Stewart de Ramirez S.A., Valera E., Bashir R. Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS sensor. 2021. V. 6. № 12. P. 4461–4470.
  12. Zong X., Zhu R. ZnO nanorod-based FET biosensor for continuous glucose monitoring. Sensors and Actuators B: Chemical. 2018. V. 255. P. 2448–2453.
  13. De Moraes A.C.M. Recent trends in field-effect transistors-based immunosensors. Chemosensors. 2016. V. 4. № 4. P. 20.
  14. Naumova O., Generalov V., Shcherbakov D., Zaitseva E., Zhivodkov Y., Kozhukhov A., Latyshev A., Aseev A., Safatov A., Buryak G., Cheremiskina A., Merkuleva Ju., Rudometova N. Sensors with dielectrophoretic concentration of viruses and proteins. Biosensors. 2022. V. 12. № 11. P. 992.
  15. Generalov V.M., Cheremiskina A.A., Gluxov A.V., Grabezhova V.K. Biosensor dlya indikacii biologicheskix chasticz: poleznaya model` k patentu RU 215954 U1 Ros. Federaciya. zayavl. 25.08.2022 № 2022122941; opubl. 11.01.2023, Byul. № 2.
  16. FGBNU Institut biomedicinskoj ximii imeni V.N. Orexovicha. Unikal`naya nauchnaya ustanovka «Avogadro». URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ibmc.msk.ru/content/USU-240621.pdf (data poseshheniya 10.08.2024).
  17. Naumova O.V., Fomin B.I. Optimizaciya otklika nanoprovolochny`x biosensorov. Avtometriya. 2016. T. 52. № 5. S. 21–25.
  18. Syu Y.C., Hsu W.E., Lin C.T. Field-effect transistor biosensing: Devices and clinical applications. ECS J. Solid State Sci. Technol. 2018. V. 7. № 7. P. Q3196.
Date of receipt: 05.05.2025
Approved after review: 17.06.2025
Accepted for publication: 20.10.2025