350 rub
Journal Biomedical Radioelectronics №4 for 2025 г.
Article in number:
Three-dimensional graphical representation of the defining characteristics of general magnetic therapy devices
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202504-04
UDC: 621.317.421
Authors:

T.A. Zhilnikov1, V.I. Zhulev2, A.A. Zhilnikov3

1,3 The Academy of the Federal Penitentiary Service of Russia (Ryazan, Russia)

2 FSBEI HE “Ryazan State Radio Engineering University named after V.F. Utkin” (Ryazan, Russia)

1 ark9876@mail.ru

Abstract:

The therapeutic and health-improving effect of magnetotherapy is largely determined by the complexity of the shape of the vector magnetic field in space. A shape with a heterogeneous vector distribution allows for varying degrees of influence on adjacent areas, and the resulting gradient of the magnetic field induces biological activity in the tissues. At the same time, the use of a new, untested methodology and, consequently, the associated set of parameters defining the magnetic field during a magnetotherapy session can not only reduce the effectiveness of treatment but also provoke undesirable side effects.

In the development of magnetotherapy techniques, it is important to understand the distribution pattern of the vector magnetic field generated by the inductors of general-purpose magnetotherapy devices and to compare it with their defining parameters. The distribution pattern can be obtained from theoretical calculations or through direct measurements of the magnetic field. Since theoretical calculations of such heterogeneous fields are quite challenging and do not allow for a clear mathematical description of the spatial distribution of the vector magnetic induction function, obtaining reliable data necessitates resorting to direct (or indirect) magneto-measurements.

Within the framework of this study, the magnetic fields of the inductor of the «Multimag» magnetic therapy complex in areas affecting the human body were studied.

Visualization of all orthogonal components of the vector function of magnetic induction in space makes it possible to compare their graphical representation, the magnitude of the parameters determining the effect (frequency, intensity, type of periodic signal) and the healing and wellness effect of magnetic therapy, which increases the effectiveness of the functioning of general-effect magnetic therapy devices.

Pages: 31-42
For citation

Zhilnikov T.A., Zhulev V.I., Zhilnikov A.A. Three-dimensional graphical representation of the defining characteristics of general magnetic therapy devices. Biomedicine Radioengineering. 2025. V. 28. № 4. Р. 31-42. DOI: https://doi.org/10.18127/j15604136-202504-04 (In Russian).

References
  1. Sistemy kompleksnoj elektromagnitoterapii. Pod red. A.M. Berkutova, V.I. Zhuleva, G.A. Kuraeva, E.M. Proshina. M.: Laboratoriya bazovyh znanij Binom. 2000. 376 s. (in Russia).
  2. Ponomarenko G.N. Obshchaya fizioterapiya: Uchebnik. M.: GEOTAR-Media. 2014. 368 s. (in Russia).
  3. Holodov Yu.A., Shishlo M.A. Elektromagnitnye polya v nejrofiziologii. M.: Nauka. 1979. 168 s. (in Russia).
  4. Mizun Yu.G., Mizun P.G. Magnitnye buri i zdorov'e cheloveka. M.: Korona. 1990. 46 s. (in Russia).
  5. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Razrabotka i fizicheskoe obosnovanie realizacii informacionno-izmeritel'noj sistemy magnitoindukcionnogo issledovaniya biologicheskih ob"ektov. Biomedicinskaya radioelektronika. 2015. №5. S. 14–20. (in Russia).
  6. Egiazaryan G.A, Stafeev V.I. Magnitodiody, magnitorezistory i ih primenenie. M.: Radio i svyaz'. 1987. 87 s. (in Russia).
  7. Zhil'nikov A.A., Zhil'nikov T. A., Zhulev V.I. Nerazrushayushchaya registraciya raspredeleniya plotnosti magnitnogo potoka vnutri biologicheskih ob"ektov. Biomedicinskaya radioelektronika. 2013. №7. S. 26–31. (in Russia).
  8. Patent RF № 2463620 C1, MPK G01R 33/02. Sposob izmereniya raspredeleniya vektornoj funkcii magnitnoj indukcii periodicheskogo magnitnogo polya. A.A. Zhil'nikov, T.A. Zhil'nikov, V.I. Zhulev. № 2011114708/28: zayavl. 15.04.2011: opubl. 10.10.2012, Byul. №28; zayavitel' RGRTU. (in Russia).
  9. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Registraciya magnitnogo polya vnutri namagnichivaemyh plotnoupakovannyh granulirovannyh ferromagnitnyh sred. Prikladnaya fizika. 2020. №4. S. 63–69. (in Russia).
  10. Tihonov A.N., Arsenin V.YA., Timonov A.A. Matematicheskie zadachi komp'yuternoj tomografii. M.: Nauka. Glavnaya redakciya fiziko-matematicheskoj literatury. 1987. 160 s. (in Russia).
  11. Troickij I.N. Komp'yuternaya tomografiya. M.: Znanie. 1988. 64 s. (in Russia).
  12. Tihonov A.N., Arsenin V.YA. Metody resheniya nekorrektnyh zadach. M.: Nauka. 1979. 286 s. (in Russia).
  13. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Razvitie ob"emnoj tomografii dlya opredeleniya vektornyh fizicheskih velichin. Inzhenernaya fizika. 2019. №9. S. 10–15. DOI: 10.25791/infizik.09.2019.834 (in Russia).
  14. Govorkov V.A. Elektricheskie i magnitnye polya. M.: Energiya. 1968. 488 s. (in Russia).
  15. Bendat Dzh., Pirsol A. Prikladnoj analiz sluchajnyh dannyh: Per. s angl. M.: Mir. 1989. 540 s. (in Russia).
  16. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Prakticheskaya realizaciya sistemy neinvazivnogo magnitoindukcionnogo issledovaniya biologicheskih ob"ektov. Biomedicinskaya radioelektronika. 2016. №6. S. 27–37. (in Russia).
Date of receipt: 23.05.2025
Approved after review: 26.05.2025
Accepted for publication: 26.06.2025