350 rub
Journal Biomedical Radioelectronics №3 for 2025 г.
Article in number:
Experience of statistical analysis of a small sample size with ordered irregular data array on the example of “Content” space experiment
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202503-09
UDC: 159.9:629.7, 629.78.07:159.9
Authors:

N.S. Supolkina1, A.K. Yusupova2, A.M. Nosovskij3

1–3 State Scientific Center of the Russian Federation Institute of Biomedical Problems of the RAS (SSC RF – IMBP RAS)
1 Natalyasupolkina@yandex.ru, 2 anna_yusupova@mail.ru, 3 nam@imbp.ru

Abstract:

Psychology researchers in the space industry often face a certain number of methodological problems that arise when processing primary analysis of experimental data. Quite frequently, these difficulties are have objective reasons and reflect specifics of the space medicine itself: a limited sample size, isolated outliers of individual data values. Thus, for a researcher, the search for psychological or medical patterns confront the fact of having an objectively small number of subjects, but at the same time, a relatively large number of observations. This reflects the methodology of the ideographic approach specific to general social sciences knowledge, focusing on understanding the meaning of random, unique and often subjective phenomena.

The purpose of this work is to develop a method for primary mathematical processing of an irregular array of psychological data, based on the material of the space experiment "Content" for a sample of 14 people, the duration of the flight of each of them was from 0.5 to 1 year.

The experimental data were obtained using text content analysis of non-private working negotiations between the space crew and the Mission Control Center. The data represent a comparison of the average values of the content analysis categories, combined into three groups in accordance with the three main functions of communication (according to B.F. Lomov). A specific feature of the "Content" experiment data is the random loss of quantitative values on some days of the flight, when communication transcripts between the Earth and space station were not compiled for external reasons. The total sample of 14 cosmonauts was divided into 3 groups based on flight experience. To describe the dynamics of communication between cosmonauts and Mission Control Center specialists at different periods of the space mission, we used dispersion analysis for each group of cosmonauts.

We found that the statistical processing model proposed in the article may be applied to processing primary data of psychological experiments in space medicine and in other areas of psychological and social sciences research, in cases where the uniqueness of the experimental conditions determines a small sample of subjects.

Pages: 79-86
For citation

Supolkina N.S., Yusupova A.K., Nosovskij A.M. Experience of statistical analysis of a small sample size with ordered irregular data array on the example of “Content” space experiment. Biomedicine Radioengineering. 2025. V. 28. № 3. P. 79–86. DOI: https:// doi.org/10.18127/j15604136-202503-09 (In Russian)

References
  1. Myasnikov O.P., Kozerenko O.P., Ponomareva I.P., Uskov F.N., Hideg Ya., Chaushu V., Hand M., Mikshik O. Psihicheskoe sostoyanie i rabotosposobnost'. Rezul'taty medicinskih issledovanij na orbital'nom nauchno-issledovatel'skom komplekse «Salyut-6» – «Soyuz». M.: Nauka. 1986. S. 216–233 (In Russian).
  2. Orbital'naya stanciya «Mir». M., 2001. T. 1. 2002. T. 2 (In Russian).
  3. Mediko-biologicheskie eksperimenty na bortu rossijskogo segmenta Mezhdunarodnoj kosmicheskoj stancii. Pod red. Akademika RAN O.I. Orlova. M.: GNC RF – IMBP RAN. 2021. 232 s. (In Russian).
  4. Windelband W. History and Natural Science. Theory & Psychology. 1998. V. 8(1). P. 5–22.
  5. Kant I. Soch., t. 3. M. 1964. S. 402 (In Russian).
  6. Lazarus R.; Folkman S. Stress, Appraisal and Coping. Springer Publishing Company: New York. NY. USA. 1984.
  7. Shved D., Supolkina N., Yusupova A. The Communicative Behavior of Russian Cosmonauts: “Content” Space Experiment Result Generalization. Aerospace. 2024. V. 11(2). P. 136.
  8. Lomov B.F. Psihicheskie processy i obshchenie. M.: Institut psihologii RAN. 2006. 574 s. (In Russian).
  9. Kostenko S.A. Tekhnologiya primeneniya mnogomernogo shkalirovaniya i klasternogo analiza. Fundamental'nye issledovaniya. 2012. № 11. S. 927–930 (In Russian).
  10. Small Sample Size Solutions. A Guide for Applied Researchers and Practicioners. Eds.: Van de Schoot, R., Miocevic, M. Routledge. 2020. 269 r.
  11. Zinov'ev A.Yu. Vizualizaciya mnogomernyh dannyh. Krasnoyarsk: Izd-vo KGTU. 2000. 320 s. (In Russian)
  12. Lemeshko B.Yu., Mirkin E.P. Kriterii Bartletta i Kokrena v izmeritel'nyh zadachah pri veroyatnostnyh zakonah, otlichayushchihsya ot normal'nogo. Izmeritel'naya tekhnika. 2004. T. №10. S. 10–16 (In Russian).
  13. Kobzar' A.I. Prikladnaya matematicheskaya statistika. M.: Fizmatlit. 2006. 816 s. (In Russian).
  14. Shapiro S.S., Uilk M.B. Dispersionnyj analiz na normal'nost' (polnye vyborki). Biometrika. 1965. V. 52 (3–4). P. 591-611. DOI:10.1093/biomet/52.3-4.591 (In Russian).
  15. Small Sample Size Solutions (Open Access). London: Routledge. 2020.
  16. Kostenko S.A. Tekhnologiya primeneniya mnogomernogo shkalirovaniya i klasternogo analiza. Fundamental'nye issledovaniya. 2012. № 11. S. 927–930 (In Russian).
  17. Kostenko S.A. Obzor programmnyh sredstv, ispol'zuyushchih mnogomernye metody shkalirovaniya i klasterizacii. Vestnik komp'yuternyh tekhnologij. 2013. № 1. S. 44–46 (In Russian).
  18. Muresan D.D., Parks T.W. Adaptive Principal Components and Image Denoising. In: Image Processing, 2003, Proceedings. 2003 IEEE International Conference on Image Processing (ICIP). 2003. V. 1. 14–17 Sept. P. 101–104.
Date of receipt: 23.01.2025
Approved after review: 26.02.2025
Accepted for publication: 15.04.2025