A.L. Eryomin1, N.M. Bogatov2, A. Reyes Moncada3
1–3 Kuban State University (KubSU) (Krasnodar, Russia)
1 aeremin@yandex.ru, 2 bogatov@phys.kubsu.ru, 3 alejoreyes666@gmail.com
Developments are presented and reviewed:
tabular classification matrix "standards of mental functions according to the International Classification of Functioning WHO – experimental data of functional magnetic resonance imaging – loci in the three – dimensional structure of the brain";
techniques for placing LEDs at precise coordinates in a physical model of the brain structure to reflect the loci of specific mental functions;
image segmentation and reconstruction techniques for obtaining a three-dimensional brain grid of high resolution and accuracy;
3D-printed realistic model of the human brain using additive technologies of layer-by-layer printing and laser stereolithography;
technologies for creating a multilayer structure with arrays of LEDs of different color reproduction and assembly inside a 3D-model of the brain.
The developed methodology and practical implementation of the structural and functional physical model of localization of mental functions in the three-dimensional space of the brain is an innovative approach that, when implemented in practice, can contribute to improvement and optimization in: teaching and research in the physiology of higher nervous activity, psychiatry, psychology, neurology, neuroscience and neurotechnology, biophysics, medical physics, psychophysics, neurophysics, bioengineering; medical imaging, diagnosis and treatment of nervous and mental diseases, planning in neurosurgery and radiotherapy.
Eryomin A.L., Bogatov N.M., Reyes Moncada A. Neurophysical programmable model for imaging the loci of mental functions in the brain. Biomedicine Radioengineering. 2025. V. 28. № 1. P. 6–17. DOI: https:// doi.org/10.18127/j15604136-202501-01 (In Russian)
- Axer M., Amunts K. Scale matters: the nested human connectome. Science. 2022. V. 378. № 6619. P. 500–504.
- Adams A. et al. International brain initiative: an innovative framework for coordinated global brain research efforts. Neuron. 2020. V. 105. № 2. P. 212–216.
- Anoxin K.V. Kognitom: v poiskax fundamental`noj nejronauchnoj teorii soznaniya. Zhurnal vy`sshej nervnoj deyatel`nosti im. IP Pavlova. 2021. T. 71. № 1. S. 39–71.
- Mezhdunarodnaya klassifikaciya funkcionirovaniya, ogranichenij zhiznedeyatel`nosti i zdorov`ya. Zheneva: Vsemirnaya Organizaciya Zdravooxraneniya. 2001.
- Eremin A.L., Rejes Monkada A. Matricza lokusov umstvenny`x funkcij v trexmernom prostranstve mozga po nejrovizualizacii fMRT / Sovremenny`e problemy` fiziki, biofiziki i infokommunikacionny`x texnologij. Krasnodar: CzNTI. 2023. S. 84–100.
- Zinchenko O., Arsalidou M. Brain responses to social norms: Meta‐analyses of MRI studies. Human brain mapping. 2018. V. 39. № 2. P. 955–970.
- Owen A.M. et al. Detecting awareness in the vegetative state. Science. 2006. V. 313. № 5792. P. 1402–1402.
- Boly M. et al. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage. 2007. V. 36. № 3. P. 979–992.
- Ameller A. Les troubles de la familiarité dans la schizophrénie. Lille: Université du Droit et de la Santé-Lille II. 2014.
- Yang Z. et al. Using fMRI to decode true thoughts independent of intention to conceal. NeuroImage. 2014. V. 99. P. 80–92.
- Harlé K.M., Sanfey A.G. Social economic decision-making across the lifespan: An fMRI investigation. Neuropsychologia. 2012. V. 50. № 7. P. 1416–1424.
- Hao X. et al. Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: An fMRI study. Brain research. 2013. V. 1534. P. 46–54.
- Rilling J.K. et al. A neural basis for social cooperation. Neuron. 2002. V. 35. № 2. P. 395–405.
- Franzan M.E. Activación cerebral diferencial en la prueba de reconocimiento de emociones faciales UNCEEF mediante la utilización de resonancia magnética functional. Buenos Aires: Instituto Universitario Hospital Italiano de Buenos Aires. 2019.
- Lévesque J. Neuroanatomie fonctionnelle sous-tendant la régulation consciente et volontaire de la tristesse chez l'enfant et l'adulte sains. 2005.
- Fusar-Poli P. et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of psychiatry and neuroscience. 2009. V. 34. № 6. P. 418–432.
- Wu Y. et al. Religious beliefs influence neural substrates of self-reflection in Tibetans. Social Cognitive and Affective Neuroscience. 2010. V. 5. № 2-3. P. 324–331.
- Han S. et al. Neural consequences of religious belief on self-referential processing. Social Neuroscience. 2008. V. 3. № 1. P. 1–15.
- Christensen J.F. et al. Roman Catholic beliefs produce characteristic neural responses to moral dilemmas. Social Cognitive and Affective Neuroscience. 2014. V. 9. № 2. P. 240–249.
- Beauregard M., Paquette V. Neural correlates of a mystical experience in Carmelite nuns. Neuroscience letters. 2006. V. 405. № 3. P. 186–190.
- Poldrack R.A., Mumford J.A., Nichols T.E. Handbook of functional MRI data analysis. Cambridge University Press. 2024.

