350 rub
Journal Biomedical Radioelectronics №6 for 2024 г.
Article in number:
Design of the optimal electrode system for biopsy with maximum sensitivity to breast adenocarcinoma
Type of article: scientific article
DOI: 10.18127/j15604136-202406-06
UDC: 61; 537.39; 537.311.6
Authors:

A.A. Satanenko1, I.A. Kudashov2, A.P. Nikolaev3

1–3 Bauman Moscow State Technical University (Moscow, Russia)
1 arti1286@yandex.ru, 2 KydashovV@mail.ru, 3 apnikolaev@yandex.ru

Abstract:

Breast tumors are the leading oncological pathology in the female population, especially in number of new diagnosed cases and the mortality rate. The most dangerous are malignant adenocarcinomas, which grow significantly fast and create metastases in the surrounding organs and tissues. Early detection is the key factor to increase breast cancer survival rate. Cytological or histological analysis based on puncture biopsy are safe procedures allowing for an accurate diagnosis, pivotal for adequate decision-making, including, when indicated, treatment planning. However, result of the analysis strongly depends on the quality of biopsy material. Insufficient accuracy rates under ultrasound control of the needle tip in area, containing a suspicious tumor, may cause false-negative results. This leads to another verification procedure, additional time spent and unnecessary discomfort of the patient. Electroimpedance method was proposed to increase the accuracy rates of the needle tip guidance in breast.

Optimal geometry determination of the electrode system, providing maximum sensitivity in diagnosis of adenocarcinoma based on measurements of the phase angle.

The conclusions obtained as a result of the work on determining the optimal geometry of the electrode system will be used in the development and manufacture of the experimental prototype for biopsy.

Based on dimensions of the breast adenocarcinoma at first stage, the thicknesses of the conductive and insulating layers, the outer diameter and the bevel tip angle of the coaxial electrode system were defined to achieve maximum sensitivity in probing frequency range from 10 to 40 kHz.

In future, electroimpedance and ultrasound methods can be used together to increase the accuracy rates of needle tip guidance in breast.

Pages: 67-76
For citation

Satanenko A.A., Kudashov I.A., Nikolaev A.P. Design of the optimal electrode system for biopsy with maximum sensitivity to breast adenocarcinoma. Biomedicine Radioengineering. 2024. V. 27. № 6. P. 67–76. DOI: https:// doi.org/10.18127/j15604136-202406-06 (In Russian)

References
  1. Sostoyanie onkologicheskoj pomoshhi naseleniyu Rossii v 2022 godu / Pod red. A.D. Kaprina, V.V. Starinskogo, A.O. Shaxzadovoj. M.: MNIOI im. P.A. Gercena − filial FGBU «NMICz radiologii» Minzdrava Rossii. 2022. 239 s.
  2. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians. 2022. V. 74. № 3. Р. 205–313. doi: 10.3322/caac.21834
  3. Zlokachestvenny`e novoobrazovaniya v Rossii v 2022 godu (zabolevaemost` i smertnost`) / Pod red. A.D. Kaprina, V.V. Starinskogo, A.O. Shaxzadovoj, I.V. Lisichnikovoj. M.: MNIOI im. P.A. Gercena − filial FGBU «NMICz radiologii» Minzdrava Rossii. 2023. 275 s.
  4. Makki J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin. Med. Insights Pathol. 2015. V. 8. Р. 23–31. doi: 10.4137/CPath.S31563
  5. Geddes D. Ultrasound imaging of the lactating breast: methodology and application. International Breastfeeding Journal. 2009. V. 4. № 4. Р. 17. doi:10.1186/1746-4358-4-4
  6. Dong G., Wang D., Liang X., Gao H., Wang L., Yu X., Liu J. Factors Related to Survival Rates for Breast Cancer Patients. Int. J. Clin. Exp. Med. 2014. V. 7 № 10. Р. 3719–3724.
  7. Myers E., Moorman P., Gierisch J., Havrilesky L., Grimm L., Ghate S., Davidson B., Mongtomery R., Crowley M., McCrory D., Kendrick A., Sanders G. Benefits and harms of breast cancer screening: a systematic review. JAMA. 2015. V. 314. № 15. Р. 1615-1634. doi: 10.1001/jama.2015.13183
  8. Tomkovich K. Interventional Radiology in the Diagnosis and Treatment of Diseases of the Breast: a Historical Review and Future Perspective Based on Currently Available Techniques. AJR Am. J. Roentgenol. 2014. V. 203. № 4. Р. 725–733. doi: 10.2214/AJR.14.12994
  9. Farras Roca J., Tardivon A., Thibault F., Khoury C., Séverine Alran S., Fourchotte V., Marck V., Alépée B., Sigal B., Rycke Y., Rouzier R., Klijanienko J. Diagnostic Performance of Ultrasound-guided Fine-needle Aspiration of Nonpalpable Breast Lesions in a Multi-disciplinary Setting: the Institut Curie's Experience. Am. J. Clin. Pathol. 2017. V. 147. № 6. Р. 571–579. doi: 10.1093/ajcp/aqx009
  10. Sardanelli F., Helbich T. Mammography: EUSOBI Recommendations for Women's Information. Insights Imaging. 2012. V. 3. № 1. Р. 7–10. doi: 10.1007/s13244-011-0127-y
  11. Mann R., Balleyguier C., Baltzer P., Bick U., Colin C., Cornford E., Evans A., Fallenberg E., Forrai G., Fuchsjäger M., Gilbert F., Helbich T., Heywang-Köbrunner S., Camps-Herrero J., Kuhl C., Martincich L., Pediconi F., Panizza P., Pina L., Pijnappel R., Pinker-Domenig K., Skaane P., Sardanelli F. Breast MRI: EUSOBI Recommendations for Women's Information. Eur. Radiol. 2015. V. 25. № 12. Р. 3669–3678. doi: 10.1007/s00330-015-3807-z
  12. Sardanelli F., Fallenberg E., Clauser P., Trimboli R., Camps-Herrero J., Helbich T., Forrai G. Mammography: an Update of the EUSOBI Recommendations on Information for Women. Insights Imaging. 2017. V. 8. № 1. Р. 11–18. doi: 10.1007/s13244-016-0531-4
  13. Evans A., Trimboli R., Athanasiou A., Balleyguier C., Baltzer P., Bick U., Herrero J., Clauser P., Colin C., Cornford E., Fallenberg E., Fuchsjaeger M., Gilbert F., Helbich T., Kinkel K., Heywang-Köbrunner S., Kuhl C., Mann R., Martincich L., Panizza P., Pediconi F., Pijnappel R., Pinker K., Zackrisson S., Forrai G., Sardanelli F. Breast Ultrasound: Recommendations for Information to Women and Referring Physicians by the European Society of Breast Imaging. Insights Imaging. 2018. V. 9. № 4. Р. 449–461. doi: 10.1007/s13244-018-0636-z
  14. Bick U., Trimboli R., Athanasiou A., Bick U., Trimboli R., Athanasiou A., Balleyguier C., Baltzer P., Bernathova M., Borbély K., Brkljacic B., Carbonaro L., Clauser P., Cassano E., Colin C., Esen G., Evans A., Fallenberg E., Fuchsjaeger M., Gilbert F., Helbich T., Heywang-Köbrunner S., Herranz M., Kinkel K., Kilburn-Toppin F., Kuhl C., Lesaru M., Lobbes M., Mann R., Martincich L., Panizza P., Pediconi F., Pijnappel R., Pinker K., Schiaffino S., Sella T., Thomassin-Naggara I., Tardivon A., Ongeval C., Wallis M., Zackrisson S., Forrai G., Herrero J., Sardanelli F. Image-guided Breast Biopsy and Localisation: Recommendations for Information to Women and Referring Physicians by the European Society of Breast Imaging. Insights Imaging. 2020. V. 11. № 1. P. 18. doi: 10.1186/s13244-019-0803-x
  15. Kazi M., Suhani P., Parshad R., Seenu V., Mathur S., Haresh K. Fine-needle Aspiration Cytology (FNAC) in Breast Cancer: a Reap-praisal Based on Retrospective Review of 698 Cases. World J. Surg. 2017. V. 41. № 6. Р. 1528–1533. doi: 10.1007/s00268-017-3906-x
  16. Malich A., Bohm T., Facius M., Kleinteich I., Fleck M., Sauner D., Anderson R., Kaiser W. Electrical Impedance Scanning as a New Ima­ging Modality in Breast Cancer Detection – a Short Review of Clinical Value on Breast Application, Limitations and Perspectives. Nucl. Instr. and Meth. in Phys. Res. A. Eq. 2003. V. 497. № 1. Р. 75–81. doi: 10.1016/s0168-9002(02)01894-6
  17. Hope T., Iles S. Technology Review: The Use of Electrical Impedance Scanning in the Detection of Breast Cancer. Breast Cancer Res. 2004. V. 6. Р. 69–74. doi: 10.1186/bcr744
  18. Malich A., Boehm T., Facius M., Freesmeyer M., Fleck M., Anderson R., Kaiser W. Differentiation of Mammographically Suspicious Lesions: Evaluation of Breast Ultrasound, MRI Mammography and Electrical Impedance Scanning as Adjunctive Technologies in Breast Cancer Detection. Clin. Radiol. 2001. V. 56. № 4. Р. 278–283. doi: 10.1053/crad.2000.0621
  19. Pryor R.W. Multiphysics Modeling Using COMSOL: A First Principles Approach. Jones & Bartlett Publishers. 2009. P. 852.
  20. Satanenko A., Kudashov I., Nikolaev A. Searching for the Optimal Frequency to Identify Breast Tumors Using Impedance Spectrosco-py. 2024 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). 2024. P. 6. doi: 10.1109/ ElCon61730.2024.10468462
  21. Brierley J., Gospodarowicz M., Wittekind C. TNM Classification of Malignant Tumours, Eighth edition. UICC. Wiley-Blackwell. 2016. Р. 272.
  22. Kalvøy H., Tronstad C., Nordbotten B., Grimnes S., Martinsen O. G. Electrical impedance of stainless-steel needle electrode. Annals of biomedical engineering. 2010. V. 38. № 7.
  23. Liaw D.-J., Wang K.-L., Huang Y.-C., Lee K.-R., Lai J.-Y., Ha C.-S. Advanced polyimide materials: syntheses, physical properties and applications. Progress in Polymer Science. 2012. V. 37. № 7. Р. 907–974.
  24. Hesabgar S., Sadeghi-Naini A., Czarnota G., Samani A. Dielectric Properties of the Normal and Malignant Breast Tissues in Xeno-graft Mice at Low Frequencies (100 Hz – 1 MHz). Measurement. 2017. V. 105. Р. 56–65. doi: 10.1016/j.measurement.2017.04.004
Date of receipt: 08.10.2024
Approved after review: 30.10.2024
Accepted for publication: 20.11.2024