350 rub
Journal Biomedical Radioelectronics №6 for 2024 г.
Article in number:
Tissue-mimicking materials of arterial vessel test objects for CT-angiographic studies: a review of the literature
Type of article: scientific article
DOI: 10.18127/j15604136-202406-05
UDC: 611.13; 611.08
Authors:

Y.A. Vasilev1, M.R. Kodenko2, O.V. Omelyanskaya3, A.S. Borde4, D.I. Abyzova5, A.V. Guseva6, A.V. Samorodov7, L.Y. Anopchenko8, R.V. Reshetnikov9

1–4, 6, 8, 9 State Budget-Funded Health Care Institution of the City of Moscow «Research and Practical Clinical Center
for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department» (Moscow, Russia)
2, 5–7 Bauman Moscow State Technical University (Moscow, Russia)
1 VasilevYA1@zdrav.mos.ru, 2 m.r.kodenko@yandex.ru, 3 OmelyanskayaOV@zdrav.mos.ru,
4 borde@bmstu.ru, 5 theoriginaldoctor1963@gmail.com, 6 GusevaAV13@zdrav.nos.ru,
7 avs@bmstu.ru, 8 Leonid.anopchenko@gmail.com, 9 reshetnikov@fbb.msu.ru

Abstract:

The use of test-objects makes it possible to significantly expand the range of research tasks in the sphere of CT-angiography methods and tools improvement. Test-objects for simulation of vascular surgeries under X-ray control occupy a special place at traditional separation of surgical and diagnostic tasks. In this case correct visualization of the test-object and biological similarity of physical characteristics of the material from which it is made are equally important. The systematization of publications in this area, despite its relevance, is currently poorly described in the literature. The aim of the work is to systematize the data on different types of tissue-mimicking materials used for manufacturing test-objects of arterial vessels. The selection and analysis of 30 relevant publications from about 600 papers in the subject area was carried out. The data on the purpose, types of simulated vessels and biomechanical similarity of tissue-mimicking materials of test-objects were systematized. Simultaneous reproduction of X-ray and biomechanical characteristics of arterial vessels is possible using agar-glycerol mixtures supplemented with geremimetising polyurethane membrane; combination of FullCure 930 and TangoPlus for weakened arterial wall, PVA-C when the test-object works in the area of low loads, as well as combination of reinforcing threads from TPU 95A plastic in silicone matrix DragonSkin 30. The results are relevant for works in the field of materials science as well as physical modelling of arterial vessels.

Pages: 53-66
References
  1. Filippou V., Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Medical physics. 2018. T. 45. № 9. S. e740–e760.
  2. McGarry C.K. et al. Tissue mimicking materials for imaging and therapy phantoms: a review. Physics in Medicine & Biology. 2020. T. 65. № 23. S. 23TR01.
  3. Gelmini A.Y.P. et al. Virtual reality in interventional radiology education: a systematic review. Radiologia Brasileira. 2021. T. 54. № 4. S. 254–260.
  4. Means K. et al. A Review of Virtual Reality in Radiology. Current Problems in Diagnostic Radiology. 2023.
  5. Elsayed M. et al. Virtual and augmented reality: potential applications in radiology. Acta Radiologica. 2020. T. 61. № 9. S. 1258–1265.
  6. Zhou G. et al. Application of three-dimensional printing in interventional medicine. Journal of Interventional Medicine. 2020. T. 3. № 1. S. 1–16.
  7. Mitsouras D. et al. Medical 3D printing for the radiologist. Radiographics. 2015. T. 35. № 7. S. 1965–1988.
  8. Bastawrous S. et al. Principles of three-dimensional printing and clinical applications within the abdomen and pelvis. Abdominal Radio­logy. 2018. T. 43. S. 2809–2822.
  9. Giannopoulos A.A. et al. Cardiothoracic applications of 3-dimensional printing. Journal of thoracic imaging. 2016. T. 31. № 5. S. 253–272.
  10. Marro A., Bandukwala T., Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Current problems in diagnostic radiology. 2016. T. 45. № 1. S. 2–9.
  11. Bibb R., Winder J. A review of the issues surrounding three-dimensional computed tomography for medical modelling using rapid prototyping techniques. Radiography. 2010. T. 16. № 1. S. 78–83.
  12. Giannopoulos A.A. et al. Applications of 3D printing in cardiovascular diseases. Nature Reviews Cardiology. 2016. T. 13. № 12. S. 701–718.
  13. Patent № 2797398 C1 Rossijskaya Federaciya, MPK G09B 23/28. sposob izgotovleniya fantoma dlya ul`trazvukovy`x issledovanij:
    № 2022130330: zayavl. 22.11.2022: opubl. 05.06.2023 / D.V. Leonov, N.S. Kul`berg, A.A. Nasibullina [i dr.]; zayavitel` Gosudarstvennoe byudzhetnoe uchrezhdenie zdravooxraneniya goroda Moskvy` «Nauchno-prakticheskij klinicheskij centr diagnostiki i teleme­dicinskix texnologij Departamenta zdravooxraneniya goroda Moskvy`».
  14. Rickey D.W. et al. A wall-less vessel phantom for Doppler ultrasound studies. Ultrasound in medicine & biology. 1995. T. 21. № 9. S. 1163–1176.
  15. Zhao Z. et al. Engineering functional and anthropomorphic models for surgical training in interventional radiology: A state-of-the-art review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2023. T. 237. № 1. S. 3–17.
  16. Lorbeer R. et al. Reference values of vessel diameters, stenosis prevalence, and arterial variations of the lower limb arteries in a male population sample using contrast-enhanced MR angiography. PloS one. 2018. T. 13. № 6. S. e0197559.
  17. Engelke K. et al. Quantitative analysis of skeletal muscle by computed tomography imaging – State of the art. Journal of orthopaedic translation. 2018. T. 15. S. 91–103.
  18. Jodsoderzhashhie kontrastny`e preparaty` [E`lektronny`j resurs]: Material iz Vikipedii – svobodnoj e`nciklopedii: Versiya 122065343, soxranyonnaya v 13:15 UTC 4 maya 2022 / Avtory` Vikipedii // Vikipediya, svobodnaya e`nciklopediya. E`lektron. dan. San-Francisko: Fond Vikimedia, 2022.  Rezhim dostupa: https://ru.wikipedia.org/?curid=1547839&oldid=122065343
  19. Meess K.M. et al. 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system. Medical imaging 2017: imaging informatics for healthcare, research, and applications. SPIE. 2017. T. 10138. S. 159–172.
  20. Ionita C.N. et al. Angiographic imaging evaluation of patient-specific bifurcation-aneurysm phantom treatment with pre-shaped, self-expanding, flow-diverting stents: feasibility study. Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging. – SPIE. 2011. T. 7965. S. 384–392.
  21. Torres I.O., De Luccia N. A simulator for training in endovascular aneurysm repair: the use of three dimensional printers. European Journal of Vascular and Endovascular Surgery. 2017. T. 54. № 2. S. 247–253.
  22. Kärkkäinen J.M. et al. Simulation of endovascular aortic repair using 3D printed abdominal aortic aneurysm model and fluid pump. CardioVascular and Interventional Radiology. 2019. T. 42. S. 1627–1634.
  23. Cloutier G. et al. A multimodality vascular imaging phantom with fiducial markers visible in DSA, CTA, MRA, and ultrasound. Medical Physics. 2004. T. 31. № 6. S. 1424–1433.
  24. Little C.D. et al. A patient-specific multi-modality abdominal aortic aneurysm imaging phantom. International Journal of Computer Assisted Radiology and Surgery. 2022. T. 17. № 9. S. 1611–1617.
  25. King D. M. et al. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom. Medical physics. 2011. T. 38. № 2. S. 565–573.
  26. Ene F. et al. In vitro evaluation of the effects of intraluminal thrombus on abdominal aortic aneurysm wall dynamics. Medical engi-neering & physics. 2011. T. 33. № 8. S. 957–966.
  27. Perrira N. et al. Experimental Investigation of Blood Mimicking Fluid Viscosity for Application in 3D-Printed Medical Simulator. Journal of Physics: Conference Series. IOP Publishing, 2022. T. 2222. № 1. S. 012016.
  28. Shval`b P.G., Uxov Yu.I. Patologiya venoznogo vozvrata iz nizhnix konechnostej. 2009.
  29. Maximilian G. et al. Development and evaluation of 3d-printed cardiovascular phantoms for interventional planning and training. 2021.
  30. Parthasarathy J. et al. Assessment of transfer of morphological characteristics of Anomalous Aortic Origin of a Coronary Artery from imaging to patient specific 3D Printed models: A feasibility study. Computer Methods and Programs in Biomedicine. 2021. T. 201. S. 105947.
  31. He Z. et al. Anthropomorphic and biomechanical mockup for abdominal aortic aneurysm. Medical Engineering & Physics. 2020. T. 77. S. 60–68.
  32. Kodenko M.R., Guseva A.V. Hydraulic circuit for pulse flow simulation in the tissue-mimicking aortic phantom. Digital Diagnostics. 2023. T. 4. № 1S. S. 35–36.
  33. Stepniak K. et al. Novel 3D printing technology for CT phantom coronary arteries with high geometrical accuracy for biomedical ima­ging applications. Bioprinting. 2020. T. 18. S. e00074.
  34. Kaschwich M. et al. Feasibility of an endovascular training and research environment with exchangeable patient specific 3D printed vascular anatomy: Simulator with exchangeable patient-specific 3D-printed vascular anatomy for endovascular training and research. Annals of Anatomy-Anatomischer Anzeiger. 2020. T. 231. S. 151519.
  35. Lalka S.G. et al. Phantom for calibration of preoperative imaging modalities in endoluminal stent-graft repair of aortic aneurysms. Journal of vascular and interventional radiology. 1998. T. 9. № 5. S. 799–807.
  36. Allard L. et al. A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus. Medical Physics. 2013. T. 40. № 6. Part 1. S. 063701.
  37. Kwon J., Ock J., Kim N. Mimicking the mechanical properties of aortic tissue with pattern-embedded 3D printing for a realistic phan-tom. Materials. 2020. T. 13. № 21. S. 5042.
  38. Stefanov F. et al. Innovative Design and Manufacturing Techniques for Patient Specific Abdominal Aortic Aneurysm Flexible Bench-top Models. Summer Bioengineering Conference. – American Society of Mechanical Engineers, 2013. T. 55607. S. V01AT04A022.
  39. Wang K. et al. Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Materials & Design. 2016. T. 90. S. 704–712.
  40. Valverde I. et al. 3 D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheterization and Cardiovascular Interventions. 2015. T. 85. № 6. S. 1006–1012.
  41. Ho D., Squelch A., Sun Z. Modelling of aortic aneurysm and aortic dissection through 3D printing. Journal of medical radiation sciences. 2017. T. 64. № 1. S. 10–17.
  42. van Hamersvelt R.W. et al. Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study. The international journal of cardiovascular imaging. 2018. T. 34. S. 1265–1275.
  43. Richards T. et al. Quantification of uncertainty in the assessment of coronary plaque in CCTA through a dynamic cardiac phantom and 3D-printed plaque model. Journal of Medical Imaging. – 2018. T. 5. № 1. S. 013501–013501.
  44. Toepker M. et al. Stenosis quantification of coronary arteries in coronary vessel phantoms with second-generation dual-source CT: influence of measurement parameters and limitations. American Journal of Roentgenology. 2013. T. 201. № 2. S. W227–W234.
  45. Mørup S.D. et al. Design of a 3D printed coronary artery model for CT optimization. Radiography. 2022. T. 28. № 2. S. 426–432.
  46. Ionita C.N. et al. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proceedings of SPIE--the International Society for Optical Engineering. NIH Public Access, 2014. T. 9038. S. 90380M.14:05
  47. Frölich A.M.J. et al. 3D printing of intracranial aneurysms using fused deposition modeling offers highly accurate replications. American journal of neuroradiology. 2016. T. 37. № 1. S. 120–124.
  48. Legnani E. et al. Additive fabrication of a vascular 3D phantom for stereotactic radiosurgery of arteriovenous malformations. 3D Printing and Additive Manufacturing. 2021. T. 8. № 4. S. 217–226.
  49. Allard L. et al. Multimodality vascular imaging phantoms: A new material for the fabrication of realistic 3D vessel geometries. Medical physics. 2009. T. 36. № 8. S. 3758–3763.
  50. Jin K.N. et al. Dual-energy computed tomography angiography: virtual calcified plaque subtraction in a vascular phantom. Acta radiologica open. 2017. T. 6. № 7. S. 2058460117717765.
  51. Kaufmann R. et al. Vascular 3D printing with a novel biological tissue mimicking resin for patient-specific procedure simulations in
    interventional radiology: A feasibility study. Journal of Digital Imaging. 2022. T. 35. № 1. S. 9–20.
  52. De Backer P. et al. Point-of-care 3D printing: a low-cost approach to teaching carotid artery stenting. 3D Printing in Medicine. 2021. T. 7. S. 1–7.
  53. Hamedani B. A. et al. Three‐dimensional printing CT‐derived objects with controllable radiopacity. Journal of applied clinical medical physics. 2018. T. 19. № 2. S. 317–328.
  54. Kodenko M.R., Arxangel`skij A.N., Samorodov A.V., Reshetnikov R.V. Sistema imitacionnogo modelirovaniya pul`sovogo potoka v krupny`x sosudax dlya angiograficheskix issledovanij. Biomedicinskaya radioe`lektronika. 2023. T. 26. № 5. S. 85–95. DOI: https://doi.org/10.18127/j15604136-202305-09
Date of receipt: 01.10.2024
Approved after review: 28.10.2024
Accepted for publication: 20.11.2024