350 rub
Journal Biomedical Radioelectronics №4 for 2024 г.
Article in number:
Development of mobile heart rate monitoring tools using artificial neural networks
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202404-10
UDC: 51-74: 681.2.087
Authors:

A.A. Mikheev1, Yu.A. Chelebaeva2, S.V. Chelebaev3

1–3 FSBEI HE Ryazan State Radio Engineering University named after V.F. Utkin (Ryazan, Russia)

1 maa0312@yandex.ru, 2 chel-juliya@yandex.ru, 3 sergeychelr@yandex.ru

Abstract:

Currently, there is a great need for mobile monitoring systems used to detect heart rate abnormalities in citizens working or living in hard-to-reach areas. Due to problems with transmitting data from such areas, it is desirable to carry out the entire information processing process at the study site. But, despite the limited hardware costs for the implementation of such systems, it is necessary to ensure high reliability of monitoring results.

Purpose is to develop a structural diagram of a mobile heart rate analysis device, select the architecture of the neural network of the conversion and segmentation subsystem of the mobile device, determine the structure of the neural network of the conversion and segmentation subsystem, train the neural network of the conversion and segmentation subsystem, conduct software modeling of the neural network of the conversion and segmentation subsystem, implementation of a neural network conversion and segmentation subsystem based on field programmable gate arrays (FPGAs).

A structural diagram of a mobile heart rate analysis device has been developed. The choice of the neural network architecture of the mobile device conversion and segmentation subsystem is justified. The structure of the neural network of the transformation and segmentation subsystem is determined. The neural network of the transformation and segmentation subsystem was trained. A software simulation of the neural network of the transformation and segmentation subsystem was carried out, confirming the high reliability of the proposed neural network structure. A neural network conversion and segmentation subsystem has been implemented in the hardware description language VHDL based on an FPGA.

The developed structural diagram of the mobile device and the neural network structure of the conversion and segmentation subsystem can be used when implementing mobile heart rate monitoring means.

Pages: 72-79
For citation

Mikheev A.A., Chelebaeva Yu.A., Chelebaev S.V. Development of mobile heart rate monitoring tools using artificial neural networks. Biomedicine Radioengineering. 2024. V. 27. № 4. Р. 72-79. DOI: https://doi.org/10.18127/j15604136-202404-10 (In Russian).

References
  1. Klinicheskaya aritmologiya. Pod red. prof. A.V. Ardasheva. M.: MEDPRAKTIKA-M. 2009. 1220 s. (in Russian).
  2. Chelebayev S.V., Chelebayeva Yu.A. Neyrosetevyye preobrazovateli chastotno-vremennykh parametrov signalov v tsifrovoy kod dvukh peremennykh na osnove perseptronnykh setey. Uspekhi sovremennoy radioelektroniki. 2014. № 10. S. 50–56. (in Russian).
  3. Melnik O.V., Chelebayev S.V., Chelebayeva Yu.A. Avtomatizirovannyy analiz serdechnogo ritma v rezhime realnogo vremeni s ispolzovaniyem neyrosetevykh tekhnologiy. Biomeditsinskaya radioelektronika. 2017. № 7. S. 45–51. (in Russian).
  4. Chelebayeva Yu.A. Razrabotka neyrosetevoy modeli opredeleniya priznakov mertsatelnoy aritmii dlya podsistemy obrabotki signalov kardioritmogrammy. Biomeditsinskaya radioelektronika. 2021. T. 24. № 4. S. 97–106. (in Russian).
  5. Melnik O.V., Chelebayev S.V., Chelebayeva Yu.A. Metodika sinteza neyrosetevoy podsistemy obrabotki signalov kardioritmogrammy. Biomeditsinskaya radioelektronika. 2019. T. 22. № 4. S. 45–52. (in Russian).
  6. Chelebayeva Yu.A., Melnik O.V., Chelebayev S.V. Razrabotka pravil nechetkogo vyvoda dlya modeli kompleksnoy interpretatsii priznakov signalov kardioritmogrammy. Biomeditsinskaya radioelektronika. 2022. T. 25. № 4. S. 87–97. (in Russian).
  7. Golovko V.A. Neyronnyye seti: obucheniye. organizatsiya i primeneniye. Kn. 4: Ucheb. posobiye dlya vuzov. Pod red. A.I. Galushkina. M.: IPRZhR. 2001. 256 s. (in Russian).
  8. Ossovskiy S. Neyronnyye seti dlya obrabotki informatsii: per. s polskogo I.D. Rudinskogo. M.: Finansy i statistika. 2002. 344 s. (in Russian).
Date of receipt: 22.05.2024
Approved after review: 20.06.2024
Accepted for publication: 22.07.2024