350 rub
Journal Biomedical Radioelectronics №6 for 2023 г.
Article in number:
Oscillatory mechanism and photon bolometry of microwave radiation in indium antimonide nanocrystals for medical applications
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202306-12
UDC: 53.04; 53.06; 538.9
Authors:

N.D. Zhukov1

1 LLC “NPP Volga” (Saratov, Russia)
1 ndzhukov@rambler.ru

Abstract:

In a three-dimensional perfect nanocrystal of indium antimonide, stable oscillations occur according to the Bloch model, which manifest themselves and are measured in the form of current oscillations in the current-voltage characteristic. During oscillations at the stages of deceleration of an electron by an electric field, electromagnetic radiation is generated with the frequency of charge oscillations. Microwave radiation occurs in the quantum oscillator model with a frequency depending on the electron energy, which, in turn, depends on the properties of the nanocrystal, in particular, on its shape and size: ν ~ Ẽkn/h ~ 5•1012 Hz, at an = 5 nm. In view of the resonant nature of the electron motion in a nanocrystal, the radiation is strictly parameterized and can only be detected by a receiver of the same nature and structure as the emitter, in this case, an indium antimonide nanocrystal. Registration occurs due to the heating effect of radiation energy on an electron injected into the nanocrystal, as a result of which the resonant peak in the current-voltage characteristic shifts towards higher voltage values. Such a recorder can be characterized as a photon bolometer. Experiments on obtaining and recording microwave radiation in this work were carried out according to the method of experiment with "entangled" photons – on two identical probe scanning microscopes with their separate and joint switching on and statistical processing of the current-voltage characteristics obtained in this case. For applications of microwave radiation in medicine, it is necessary to research and develop a nanocell chip with electronically controlled nanocrystals that can be delivered to any human organ.

Pages: 92-102
For citation

Zhukov N.D. Oscillatory mechanism and photon bolometry of microwave radiation in indium antimonide nanocrystals for medical applications. Biomedicine Radioengineering. 2023. V. 26. № 6. P. 92–102. DOI: https://doi.org/ 10.18127/ j15604136-202306-12
(In Russian)

References
  1. Kir'yanova V.V., Zharova E.N., Bagraev N.T., Reukov A.S., Loginova S.V. Perspektiva primeneniya elektromagnitnyh voln teragercovogo diapazona v fizioterapii (retrospektivnyj obzor). Fizioterapiya, bal'neologiya i reabilitaciya. 2016. T. 15. № 4. S. 209–215. DOI 10.18821/1681-3456-2016-15-4-209-215 (In Russian).
  2. Sh. Shi, Sh. Yuan, Ju Zhou, Jiang P. Terahertz technology and its applications in head and neck disease. iScience. 2023. V. 26. P. 107060. https://doi.org/10.1016/j.isci.2023.107060
  3. Rynok ustrojstv teragercovogo izlucheniya – rost, tendencii, vliyanie COVID-19 i prognozy (2023–2028). URL: https:// www.mordorintelligence.com/ru/ industry-reports/terahertz-radiation-devices-market (In Russian).
  4. Tong W., Zhu P. 6G: The Next Horizon. From Connected People and Things to Connected Intelligence. Cambridge University Press. 2021. 490 p.
  5. Isaev V.M., Kabanov I.N., Komarov V.V., Meshchanov V.P. Sovremennye radioelektronnye sistemy teragercovogo diapazona. Doklady TUSURa. 2014. T. 4 (34). S. 5–21 (In Russian).
  6. Alaverdyan S.A., Bokov S.I., Zajcev N.A., Isaev V.M., Kabanov I.N., Krenickij A.P., Meshchanov V.P. Setochnye struktury polyarizacii elektromagnitnyh voln v teragercovom diapazone chastot. Elektromagnitnye volny i elektronnye sistemy. 2012. T. 17. № 12. S. 47–50 (In Russian).
  7. Alaverdyan S.A., Bokov S.I., Isaev V.M., Kabanov I.N., Komarov V.V., Krenickij A.P., Meshchanov V.P., Savushkin S.A., Yakunin A.S. Peredatochnye harakteristiki setochnyh polyarizatorov teragercovogo diapazona. Dinamika slozhnyh sistem – XXI vek. 2012. № 4. S. 89–94 (In Russian).
  8. Kabanov I.N. Issledovanie odnomernyh polyarizacionnyh reshetok v teragercovom diapazone. Radiotekhnika. 2013. № 5. S. 27–29 (In Russian).
  9. Gibin I.S., Kotlyar P.V. Priemniki izlucheniya teragercovogo diapazona (obzor). Uspekhi prikladnoj fiziki. 2018. T. 6. № 2. S. 117–129 (In Russian).
  10. Dragunov V.P., Neizvestnyj I.G., Gridchin V.A. Osnovy nanoelektroniki. M.: Logos. 2006. 495 s. (In Russian).
  11. Zhukov N.D., Sergeev S.A., Hazanov A.A., Yagudin I.T. Features of the radiative properties of quantum-size particles of narrow-gap semiconductors. Technical Physics Letters. 2022. V. 48(14). P. 70–73. DOI: 10.21883/PJTF.2021.22.51725.18927
  12. Krylskya D.V., Zhukov N.D. Synthesis and Properties of Indium Antimonide Big Quantum Dots. Technical Physics Letters. 2020. V. (46)9. P. 901–904.
  13. Zhukov N.D., Gavrikov M.V., Rokakh A.G. Electron-photon interactions in the conditions of dimensional conductivity restrictions in semiconductor single quantum-size particles in interelectrodic nanogap. Technical Physics Letters. 2023. V. 49 (2). P. 31–34. DOI: 10.21883/TPL. 2023.02. 55367. 19393
  14. Sokolov V.N., Iafrate G.J. Spontaneous Emission of Bloch Oscillations Under the Competing Influence of Microcavity Amplification and Degradation of an Inhomogeneous Interface. J. Applied Physics. 2014. V. 115. P. 054307.
  15. Dmitriev I.A., Suris R.A. Lokalizaciya elektronov i blohovskie oscillyacii v sverhreshetkah iz kvantovyh tochek v postoyannom elektricheskom pole. Fizika i tekhnika poluprovodnikov. 2001. T. 35. Vyp. 2. S. 219–226 (In Russian).
  16. Montanarella F., Kovalenko M.V. Optical Probing of Crystal Lattice Configurations in Single CsPbBr3 Nanoplatelets. ACS Nano. 2022. V. 16(4). P. 5085.
  17. Zhukov N.D., Smirnova T.D., Khazanov A.A., Tsvetkova O.Yu., Shtykov S.N. Properties of semiconductor colloidal quantum dots obtained under controlled synthesis conditions. Semiconductors. 2021. V. 55(12). P. 950–955.
  18. Zhukov N.D., Gavrikov M.V. Electron transport in single colloidal quantum dots in an interelectrode nanogap. Technical Physics Letters. 2022. V. 48(3). P. 61–65.
  19. Bagraev N.T., Buravlev A.D., Klyachkin L.E., Malyarenko A.M., Gel'hoff V.V., Ivanov V.K., Shelyh I.A. Kvantovannaya provodimost' v kremnievyh kvantovyh provolokah. Fizika i tekhnika poluprovodnikov. 2002. T. 36. Vyp. 4. S. 462–483 (In Russian).
  20. Milano G., Aono M., Boarino L.,  Kozicki M., Majumdar S., Menghini M.,  Miranda E., C. Ricciardi S., Tappertzhofen S, Valov K.T.I. Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Adv. Mater. 2022. V. 34. P. 2201248.
  21. Vorob'ev L.E., Danilov S.N., Zerova V.L., Firsov D.A. Razogrev nositelej zaryada v kvantovyh yamah pri opticheskoj i tokovoj inzhekcii elektronno-dyrochnyh par. Fizika i tekhnika poluprovodnikov. 2003. T. 37. Vyp. 5. S. 604–611 (In Russian).
  22. Khalkhal E., Razzaghi M., Rostami-Nejad M., Rezaei-Tavirani M., Heidari B.H., Rezaei T.M. Evaluation of laser effects on the human body after laser therapy. J. Lasers Med. Sci. 2020. V. 11(1). P. 91–97. doi:10.15171/jlms.2020.15.
  23. Patent (RF) na izobretenie № 2777199. Sposob izgotovleniya provodyashchej nanoyachejki s kvantovymi tochkami. M.V. Gavrikov, E.G. Gluhovskoj, N.D. Zhukov, I.T. Yagudin. 2021 (In Russian).
Date of receipt: 28.09.2023
Approved after review: 13.10.2023
Accepted for publication: 20.10.2023