350 rub
Journal Biomedical Radioelectronics №6 for 2023 г.
Article in number:
Directions of the development of technologies and devices for microwave therapy of deep-seated neoplasms
Type of article: overview article
DOI: https://doi.org/10.18127/j15604136-202306-09
UDC: 621.396.677
Authors:

V.A. Yolkin1, A.I. Toma2, V.V. Komarov3, V.P. Meschanov4

1, 4JSC NPP «NIKA-SVCH» (Saratov, Russia)
2 FGBU «United hospital with polyclinic», Administration of the President of Russian Federation (Moscow, Russia)
3 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)
1jva8989@mail.ru, 2 al_toma@mail.ru, 3 vyacheslav.komarov@gmail.com, 4 nika373@bk.ru

Abstract:

Methods for the treatment of oncological diseases using electromagnetic waves of the microwave range have been successfully utilized in clinical practice. Quite a lot of publications, including review papers and monographs, are devoted to the results of scientific research and treatment by these methods.  At the same time, in recent years there have been certain trends in the further development of this area of biomedical radio electronics. The need to systemize various data in this area determines the relevance of this review. Analysis of trends in the development of technologies for the treatment and destruction of pathological neoplasms using microwave radiation is the objective of the present paper. The basic trends in the development of minimally invasive and non-invasive technologies for the treatment of neoplasms with microwave radiation are considered.  The analysis of these trends was carried out in such areas as the operating frequency ranges, the electronic component base, the functionality of microwave surgery and therapy devices, the combination of different approaches, and so on.  Recommendations on the practical application of various technologies are formulated. The review makes it possible to understand the ways of development of such an important direction of biomedical radio electronics as microwave technologies for the treatment of deep-seated cancerous tumors. The presented data can be used when planning scientific research in this area, both for the designers of radio electronic equipment, and for experts in the field of medical technology and practicing physicians.

Pages: 67-75
For citation

Yolkin V.A., Toma A.I., Komarov V.V., Meschanov V.P. Directions of the development of technologies and devices for microwave therapy of deep-seated neoplasms. Biomedicine Radioengineering. 2023. V. 26. № 6. P. 67–75. DOI: https://doi.org/ 10.18127/ j15604136-202306-09 (In Russian)

References
  1. Terahertz biomedical science and technology. Ed. by J.-H. Son. New York: CRC Press. 2014. 377 p.
  2. Principles and technologies for electromagnetic energy based therapies. Ed. by P. Prakash and G. Srimathveeravalli. New York: Elsevier. 2021. 422 p.
  3. Habash R.W.Y. Bioeffects and therapeutic application of electromagnetic energy. New York: CRC Press. 2011. 369 p.
  4. Krasyuk V.N. Teoriya i tekhnika primeneniya SVCh elektromagnitnyh voln v medicine. SPb.: GUAP. 2014. 308 s. (In Russian).
  5. Neelakanta P.S., Sharma B. Conceiving THz-endometrial ablation: feasibility, requirements and technical challenges. IEEE Transactions on Terahertz Science and Technology. 2013. V. 3. № 4. P. 402–408. DOI. 10.1109/TTHZ.2013.2255049
  6. Moskvicheva L.I., Sidorov D.V., Lozhkin M.V., Petrov L.O., Zabelin M.V. Sovremennye metody ablyacii zlokachestvennyh novoobrazovanij pecheni. Issledovaniya i praktika v medicine. 2018. T. 5. № 4. S. 58–71. DOI: 10.17709/2409-2231-2018-5-4-6 (In Russian).
  7. Microwave ablation treatment of solid tumors. Ed. by P. Liang, X.-L.Yu, J. Yu. Berlin: Springer. 2015. 344 p.
  8. Microwave ablation of bone tumors. Ed. by Q. Fan. Berlin: Springer. 2022. 318 p.
  9. Makarov V.N., Yushchenko G.V. Sravnitel'nyj analiz mikrovolnovogo i radiochastotnogo nagreva pri teplovoj ablyacii opuholej. Biomedicinskaya radioelektronika. 2009. № 2. S. 3–10 (In Russian).
  10. Metaxas A.C., Meredith R.J. Industrial microwave heating. London: Peter Peregrinus Ltd, 1983. 356 p.
  11. Dodd G.D., Dodd N.A., Lanctot A.C., Glueck D.A. Effect of variation of portal venous blood flow on radiofrequency and microwave ablation in a blood-perfused bovine liver model. Radiology. 2013. V. 267. № 1. P. 129–136. DOI: 10.1148/radiol.12120486
  12. Shi W., Liang P., Zhu Q., Yu X., Shao Q., Lu T., Wang Y., Dong B. Microwave ablation: results with double 915 MHz antenna in ex vivo bovine livers. European Journal of Radiology. 2011. V. 79. № 2. P. 214–217. DOI: 10.1016/j.ejrad.2010.03.015
  13. Cavagnaro M., Amabile C., Bernardi P., Pisa S. A minimally invasive antenna for microwave ablation therapies: design, performances, and experimental assessment. IEEE Transactions on Biomedical Engineering. 2011. V. 58. № 4. P. 949–959. DOI: 10.1109/TBME.2010.2099657
  14. Imajo K., Ogawa Y., Yoneda M., Saito S., Nakajima A. A review of conventional and newer generation microwave ablation systems for hepatocellular carcinoma. Journal of Medical Ultrasonics. 2020. V. 47. P. 265–277. DOI:10.1007/s10396-019-00997-5
  15. Reimann C.H., Bazrafshan B., Schubler M., Schmidt S., Schuster C., Hubner F., Vogl T.J., Jakoby R. A dual-mode coaxial slot applicator for microwave ablation treatment. IEEE Transactions on Microwave Theory and Techniques. 2019. V. 67. № 3. P. 1255–1264. DOI:10.1109/TMTT.2018.2880440
  16. Komarov V.V. Numerical study and optimization of interstitial antennas for microwave ablation therapy. The European Physical Journal. Applied Physics. 2014. V. 68. № 1. 10901 (8 pages). DOI: 10.1051/epjap/2014140175
  17. Kim D., Kim K., Oh J., Cho J., Cheon C., Kwon Y. A K-band planar active integrated bi-directional switching heat applicator with uniform heating profile. IEEE Transactions on Microwave Theory and Techniques. 2009. V.57. № 10. P. 2581–2587. DOI: 10.1109/TMTT.2009.2029748
  18. Pfannenstiel A., Iannuccilli J., Cornelis F.H. et al. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. International Journal of Hyperthermia. 2022. V. 39. № 1. P. 664–674. DOI: 10.1080/02656736.2021. 1991012
  19. Yolkin V.E, Komarov V.V., Meshchanov V.P. Raspredelenie teplovogo polya v blizhnej zone koaksial'no-shchelevogo napravlennogo izluchatelya dlya mikrovolnovoj termodestrukcii novoobrazovanij. Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 6. S. 26–32. DOI: 10.18127/j20700784-202206-03 (In Russian).
  20. Makarov V.N., Boos N.A. Tendencii razvitiya ustanovok dlya radiochastotnoj ablyacii. Biomedicinskaya radioelektronika. 2021. № 6. S . 58–68. DOI: 10.18127/j15604136-202106-06 (In Russian).
  21. Gentili G.B., Ignesti C., Tesi V. Development of a novel switched-mode 2.45 GHz microwave multiapplicator ablation system. International Journal of Microwave Science and Technology. 2014. V. 2014. P. 973736. DOI: 10.1155//2014/973736
  22. Makarov V.N., Boos N.A. Sravnenie harakteristik razlichnyh sistem radiochastotnogo nagreva. Biomedicinskaya radioelektronika. 2022. № 6. S. 46–51. DOI: 10.18127/j15604136-202206-05 (In Russian).
  23. Karanasiou I.S., Karathenasis K.T., Garetsos A., Uzunoglu K. Development and laboratory testing of a noninvasive focused hyperthermia system. IEEE Transactions on Microwave Theory and Techniques. 2008. V. 56. № 9. P. 2160–2171. DOI: 10.1109/TMTT.2008.2002227
  24. Altintas G., Akduman I., Janjic A., Yilmaz T. A novel approach on microwave hyperthermia. Diagnostics. 2021. № 11. P. 493. DOI: 10.3390/diagnostics11030493
  25. Lim S., Yoon Y.J. Phase compensation technique for effective heat focusing in microwave hyperthermia systems. Applied Science. 2021. № 11. P. 5972. DOI: 10.3390/app11135972
  26. Yolkin V.A., Toma A.I., Komarov V.V., Meshchanov V.P., Altuhov P.L. Lechebno-diagnosticheskaya tekhnologiya i ustrojstvo dlya vosstanovleniya povrezhdennyh uchastkov spinnogo mozga. Biomedicinskaya radioelektronika. 2023. T. 26. № 1. S. 45–53. DOI: 10.18127/j15604136-202301-05 (In Russian).
  27. Ritz R., Heckl S., Safavi-Abbasi S., et al. Predictive factors for beneficial application of high-frequency electromagnetics for tumor vaporization and coagulation in neurosurgery. World Journal of Surgical Oncology. 2008. V. 6. P. 45–49. DOI:10.1186/1477-7819-6-45
  28. Sevast'yanova L.A., Potapov S.L., Adamenko V.G. Kombinirovannoe vozdejstvie rentgenovskogo i sverhvysokochastotnogo izlucheniya na kostnyj mozg. Nauchnye doklady vysshej shkoly. Ser. Biologicheskie nauki. 1969. T. 66. № 6. S. 46-48 (In Russian).
  29. Logani M. K., Szabo I., Makar V., et al. Effect of millimeter wave irradiation on tumor metastasis. Bioelectromagnetics. 2006. V. 27. № 4. P. 258–264. DOI: 10.1002/bem.20208
  30. Teppone M, Avakyan R. Standartnoe opisanie metodik KVCh-terapii. Millimetrovye volny v biologii i medicine. 2003. № 2(30). S. 50–59 (In Russian).
  31. Peyser A., Applbaum Y., Khoury A. et al. Osteoid Osteoma: CT-guided radiofrequency ablation using a water-cooled probe. Annals of Surgical Oncology. 2007. V. 14. P. 591–596. DOI: 10.1245/s10434-006-9293-4
Date of receipt: 04.10.2023
Approved after review: 18.10.2023
Accepted for publication: 20.10.2023