350 rub
Journal Biomedical Radioelectronics №6 for 2023 г.
Article in number:
Mathematical modeling of electromagnetic fields in the operating environment of a microwave sterilizer of surgical instruments
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202306-06
UDC: 621.37; 621.385.69
Authors:

V.B. Baiburin1, V.V. Komarov2, V.P. Meschanov3

1,2 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)
3 JSC NPP «NIKA-SVCH» (Saratov, Russia)
1 baiburinvb@rambler.ru, 2 vyacheslav.komarov@gmail.com, 3 nika373@bk.ru

Abstract:

A distinctive feature of emerging technology for decontamination of medical instruments is the prevailing effect of electromagnetic field energy on the microflora. The processes underlying this technology have shown to be poorly understood, which predetermines the relevance of this study. The objective of this work is the study of the factors influencing the strength of the electromagnetic field near the surface of medical instruments irradiated with microwave energy. Mathematical models have been developed that describe the processes of propagation and scattering of electromagnetic waves near a metal surface covered with a layer of water. The features of the field behavior inside the water layer with variations in its height and temperature are revealed. The conditions for the formation of the maximum field strength tangential to a metal surface are found. The simulation results made it possible to formulate practical recommendations for the implementation of the technology of microwave sterilization of surgical instruments.

Pages: 47-52
For citation

Baiburin V.B., Komarov V.V., Meschanov V.P. Mathematical modeling of electromagnetic fields in the operating environment of a microwave sterilizer of surgical instruments. Biomedicine Radioengineering. 2023. V. 26. № 6. P. 47–52. DOI: https://doi.org/ 10.18127/j15604136-202306-06 (In Russian)

References
  1. Nagatsu M., Zhao Y., Motrescu I., Mizutani R., Fujioka Y., Ogino A. Sterilization method for medical container using microwave-excited volume-wave plasma. Plasma processes and polymers. 2012. № 9. P. 590–596.
  2. Tonmitr N., Mori T., Takami M., Yonesu A., Hayashi N. Time-modulated LF-microwave hybrid plasma for surface sterilization. IEEE Transactions on Plasma Science. 2021. V. 49. № 1. P. 154–161.
  3. Bajburin V.B., Balakin M.I., Komarov V.V., Luneva I.O., Nikiforov A.A., Meshchanov V.P. Bystryj metod polnoj dekontaminacii v SVCH elektromagnitnom pole. Voprosy elektrotekhnologii. 2022. № 2(35). S. 27–30 (In Russian).
  4. Bajburin V.B., Komarov V.V., Meshchanov V.P. Modelirovanie elektrodinamicheskih parametrov mikrovolnovogo sterilizatora. Fizika volnovyh processov i raditekhnicheskie sistemy. 2022. T. 25. № 4. S. 52–58. DOI: https:// doi.org/10.18469/1810-3189.2022.25.4.52-58 (In Russian).
  5. Ratamadecho P., Aoki K., Akahori M. The characteristics of microwave melting of frozen packed beds using a rectangular waveguide. IEEE Transactions on Microwave Theory and Techniques. 2002. V. 50. № 2. P. 1495–1502.
  6. Vorob'ev E.A. Ekranirovanie SVCH-konstrukcij. M.: Sov. radio. 1979. 136 s. (In Russian).
  7. Grigor'ev A.D. Elektrodinamika i mikrovolnovaya tekhnika. SPb.: Lan'. 2007. 704 s. (In Russian).
Date of receipt: 02.10.2023
Approved after review: 16.10.2023
Accepted for publication: 20.10.2023