350 rub
Journal Biomedical Radioelectronics №6 for 2023 г.
Article in number:
Results and prospects of the use of microwave radiation in the problems of sterilization of biomedical objects
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202306-04
UDC: 621.37; 621.385.69; 621.373
Authors:

V.B. Baiburin1 , A.I. Toma2, V.P. Meschanov3, M.I. Balakin4, S.L. Chernishev5, V.M. Doroshenko6, V.V. Komarov7, A.A. Nikiforov8, I.O. Luneva9, V.A. Kirkitsa10

1,4,6–8,10 Yuri Gagarin State Technical University of Saratov, (Saratov, Russia)
2 Case management of the President of Russian Federation, (Moscow, Russia)
3 JSC NPP «NIKA-SVCH», (Saratov, Russia)
5 Bauman Moscow State Technical University (National Research University) (Moscow, Russia)
9 Saratov State Medical University named by V.I. Razumovskiy (Saratov, Russia)
1baiburinvb@rambler.ru,2 al_toma@mail.ru, 3nika373@bk.ru, 4balakinmaxim@gmail.com, 5 chernshv@bmstu.ru, 6dorvalentina9@gmail.com, 7vyacheslav.komarov@gmail.com, 8 ieei_director@mail.ru, 9microbe. sgmu@ mail.ru, 10SKrkts@mail.ru

Abstract:

The sterilization (disinfection) of biomedical objects and raw food materials is one of the topical areas of microwave radiation application. The most sterilizers known in Russia and the world use the principles of thermal action and require a long processing time (at least an hour). These installations are stationary, with large dimensions and weight. Therefore, the possibility of employing electromagnetic radiation in sterilizing processes distinguished by ease of control, inertia-free, selectivity, energy and economic efficiency is of particular interest. Mentioned properties open up the possibility of designing ultra-fast compact sterilizers with small weight, adapted for manual transportation. Such sterilizers are able to provide prompt medical care not only in the daily practice of clinics, but also in field hospitals, in zones of military conflicts and in emergency situations. The objective of the present study is the experimental and theoretical substantiation the possibility of realization an ultra-fast (operating time: several minutes) microwave sterilizer with the simple application technology and pilot set-up of low-intensive pulse action for treatment of biological materials. The experimental installations allowing exposing the objects under study with microwave radiation both in continuous generation and in pulsed regimes have been developed. The parameters of containers for placing objects of sterilization have been selected. Modes of complete sterilization of the studied objects are established. Mathematical models for calculation the elements of the waveguiding feeders, the operating chamber, and the magnetron oscillator are built. The possibility of developing a magnetron with a power of 1,5 kW in continuous mode allowing increasing the number of sterilized objects and reducing the processing time is shown using numerical model.

Pages: 25-32
References
  1. Arhangel'skij Yu.S. Spravochnaya kniga po SVCh-elektrotermii. Saratov: Nauchnaya kniga, 2011. 560 s. (In Russian)
  2. Devyatkov N.D. Primenenie elektroniki v medicine i biologii. Elektronnaya tekhnika. Ser. SVCh-tekhnika. 1993. № 1(455). S. 67–76 (In Russian).
  3. Kudryashov Yu.B., Perov Yu.F., Rubin A.B. Radiacionnaya biofizika: radiochastotnye i mikrovolnovye elektromagnitnye izlucheniya. M.: Fizmatlit. 2008. 184 s. (In Russian).
  4. Semenov A.S., Bajburin V.B. SVCh-energiya i ee primenenie: osobennosti, oborudovanie, tekhnologicheskie processy. Saratov: Izd-vo Sarat. un-ta. 1999. 114 s. (In Russian).
  5. Patent (US) № 5019344. Method for sterilizing articles such as dental handpieces. B.S. Kutner, D.A. Latowicki. Filed 21.04.1988; Pub. 28.05.1991.
  6. Patent (US) № 5019359. Method and apparatus for rapid sterilization of material. B.S. Kutner, D.A. Latowicki. Filed 22.11.1989; Pub. 28.05.1991.
  7. Patent (RF) na izobretenie № 2130319 ot 20.05.1999 g. Sposob bystroj sterilizacii medicinskih instrumentov. V.B. Bajburin, B.N. Maksimenko, A.A. Terent'ev i dr. (In Russian).
  8. Patent (RF) na izobretenie № 45271 ot 10.05.2005 g. Ustrojstvo sverhbystroj sterilizacii medicinskih instrumentov. V.B. Bajburin, V.V. Tertyshnik, G.M. Shub i dr.
  9. Bajburin V.B. SVCh-energiya v zadachah prakticheskoj mediciny. Aktual'nye voprosy biomedicinskoj inzhenerii: Sb. materialov IV Vseros. nauch. konf. Saratov: IC «Nauka». 2014. S. 178–181 (In Russian).
  10. Patent (RF) na poleznuyu model' № 136818 ot 20.01.2014 g. Ustrojstvo dlya sterilizacii medicinskih instrumentov. V.B. Bajburin, V.V. Tertyshnik (In Russian).
  11. Bajburin V.B., Terent'ev A.A., Luneva I.O, Mihajlin A.Yu. Issledovanie sterilizuyushchego effekta SVCh-izlucheniya na farmakologicheskie materialy. Elektrotekhnologiya na rubezhe vekov: Materialy nauch.-tekhn. konf. Saratov: SGTU. 2001. S. 77–79 (In Russian).
  12. Bajburin V. B. Tertyshnik, V. V., Shub, G. M., Luneva, I. O., Horovodova, N. Yu. Sterilizaciya medicinskih instrumentov na osnove SVCh-elektrotekhnologii. Voprosy elektrotekhnologii. 2018. № 2. S. 5–8 (In Russian).
  13. Baiburin V.B., Balakin M.I., Luneva I.O., et al. Experimental study of the sterilization capabilities of various methods of microwave exposure to medical instruments. Proceedings of the International IEEE Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov. 2022. V. 1. R. 170–172.
  14. Bajburin V. B., Balakin M.I., Komarov V.V., Luneva I.O., Nikiforov A.A., Meshchanov V.P. Bystryj metod polnoj dekontominacii v SVCh-elektromagnitnom pole. Voprosy elektrotekhnologii. 2022. № 2 (35). S. 27–30 (In Russian).
  15. Bajburin V.B., Komarov V.V., Meshchanov V.P. Modelirovanie elektrodinamicheskih parametrov mikrovolnovogo sterilizatora. Fizika volnovyh processov i radiotekhnicheskie sistemy. 2022. T. 25. № 4. S. 52–58. DOI: https://doi.org/10.18469/1810-3189.2022.25.4.52-58 (In Russian).
  16. Eremin V.P., Ershov A.S., Bajburin V.B., Balakin M.I., Sheludyakov D.A., Meshchanov V.P. Analiz vozmozhnostej sozdaniya magnetrona povyshennoj moshchnosti dlya SVCh-sterilizatora na osnove matematicheskoj modeli i eksperimental'nogo obrazca. Voprosy elektrotekhnologii. 2022. №3 (36). S. 39–43 (In Russian).
  17. Bajburin V.B., Komarov V.V., Meshchanov V.P., Balakin M.I., Kirkica V.A. Analiticheskie modeli rezonansa Fano dlya chastotno-selektivnyh poverhnostej SVCh-diapazona. Radiotekhnika. 2022. T. 86. № 10. S. 155–164. DOI:https://doi.org/10.18127 /j00338486-202210-18 (In Russian).
  18. Nizkointensivnye SVCh-tekhnologii (problemy i realizacii). Pod red. G.A. Morozova i Yu.E. Sedel'nikova. M.: Radiotekhnika. 2003. 112 s. (In Russian).
  19. Gulyaev Yu.V., Meshchanov V.P., Elkin V.A., Kac B.M., Komarov V.V., Koplevackij N.A., Lopatin A.A., Rytik A.P., Sayapin K.A., Bajburin V.B., Chernyshev S.L. Razrabotka kompleksa nizkointensivnogo mikrovolnovogo oblucheniya vodosoderzhashchih biologicheskih materialov i ego primenenie. Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 6. S. 5–12. DOI: https://doi.org/10.18127/ j20700784-202206-01 (In Russian).
  20. Elkin V.A., Toma A.I., Komarov V.V., Meshchanov V.P., Altuhov P.L. Lechebno-diagnosticheskaya tekhnologiya vosstanovleniya povrezhdennyh uchastkov spinnogo mozga. Biomedicinskaya radioelektronika. 2023. T. 26. № 1. S. 45–53. DOI: https://doi.org/10.18127/j15604136-202301-05 (In Russian).
  21. Son J.-H. Terahertz biomedical science and technology – NY: CRC Press, 2014–377 p.
  22. Bajburin V.B., Cherepanov P.D., Meshchanov V.P., Komarov V.V., Balakin M.I. Matematicheskaya model' perspektivnogo generatora magnetronnogo tipa v teragercevom diapazone chastot. Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 10. S. 39–45. DOI: https://doi.org/10.18127/ j20700784-202210-04 (In Russian).
  23. Kapica P.L. Elektronika bol'shih moshchnostej. Uspekhi fizicheskih nauk. 1962. T. 78. № 10. S. 181–265 (In Russian).
Date of receipt: 20.09.2023
Approved after review: 04.10.2023
Accepted for publication: 20.10.2023