350 rub
Journal Biomedical Radioelectronics №6 for 2023 г.
Article in number:
Interaction of microwave radiation with microbiological materials: modern concepts and research prospects
Type of article: overview article
DOI: https://doi.org/10.18127/j15604136-202306-02
UDC: 53.083.2
Authors:

A.A. Lopatin1, V.P. Meshchanov2, K.A. Sayapin3, A.I. Toma4

1–3 NIKA-Microwave, Ltd. (Saratov, Russia)
4 Federal State Budgetary Institution “OBP” Department of the President of the Russian Federation, LLC “MedIAToma” (Moscow, Russia)
1 elomasar@yandex.ru, 2 nika373@bk.ru, 3 sayapin.k.a@mail.ru, 4 al_toma@mail.ru

Abstract:

An analytical review of scientific works devoted to the problems of the impact of microwave radiation on biological objects was carried out. Practical results of using the effects of non-thermal and thermal effects of radio radiation on biological media in various fields of research are highlighted: in medicine, biology, including in the field of minimally invasive surgery. Arguments for and against the presence of non-thermal effects are presented and possible mechanisms of such effects are considered. Prospects for further research are outlined. The obtained results of the analysis of scientific literature can be useful to scientists studying the effects of electromagnetic waves on biological objects, from the point of view of explaining the mechanisms of this effect, formulating hypotheses related to other interpretations of the process of interaction of the electromagnetic field with biomaterials. The presented review helps to choose areas of research work, including the search for optimal technologies for constructing and conducting experiments.

Pages: 6-16
For citation

Lopatin A.A., Meshchanov V.P., Sayapin K.A., Toma A.I. Interaction of microwave radiation with microbiological materials: modern concepts and research prospects. Biomedicine Radioengineering. 2023. V. 26. № 6. P. 6–16. DOI: https://doi.org/10.18127/ j15604136-202306-02 (In Russian)

References
  1. Patent 2,495,429 (US). Method of treating foodstuffs. P.L. Spencer. Oct. 8, 1945.
  2. Documents of the International Radio Conference. Atlantic City, 1947. Doc. № 1-100 -No. 28 R-E. P. 464.
  3. Kermasha S., Bisakowski B., Ramaswany H. Thermal and microwave inactivation of soybean lipoxygenase. LWT – Food Sci Technol. 1993. № 26. P. 215–219.
  4. Wang N., Zoub W., Lia X., Lianga Y., Wang P. Study and application status of the nonthermal effects of microwaves in chemistry and materials science – a brief review. RSC Adv. 2022. № 12. P. 17158–17181. DOI: 10.1039/D2RA00381C.
  5. Tajchakavit S, Ramaswamy H. Thermal vs. microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. LWT – Food Sci Technol. 1997. № 30. P. 85–93. DOI: http://dx.doi.org/10.1006/fstl.1996.0136.
  6. Tajchakavit S., Ramaswamy H. Continuous-flow microwave heating of orange juice: evidence of nonthermal effects. J. Microw Power Electromagn Energy. 1995. № 30. P. 141–148. DOI: http://dx. doi.org/10.1080/08327823.1995.11688270.
  7. Bohr H., Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E. 2000. № 61. P. 4310. DOI: http://dx.doi.org/ 10.1103/PhysRevE.61.4310.
  8. Shazman A., Mizrahi S., Cogan U., Shimoni E: Examining for possible non-thermal effects during heating in a microwave oven. Food Chem. 2007. № 103. P. 444–453. DOI: http://dx.doi.org/10.1016/j. foodchem.2006.08.024.
  9. Shamis Y., Taube A., Mitik-Dineva N., Croft R., Crawford RJ., Ivanova EP. Specific electromagnetic effects of microwave radiation on Escherichia coli. Appl Environ Microbiol. 2011. № 77. P. 3017–3022. DOI: http://dx.doi.org/10.1128/AEM.01899-10.
  10. Kubo M., Siguemoto E.S., Funcia E.S., etc. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical rewiew. Current opinion in food science. 2020. V. 35. P. 36–48. DOI: 10.1016/j.cofs.2020.01.004.
  11. Patent na izobretenie (RF) № 2735496. SVCh-ustrojstvo dlya destrukcii patologicheski izmenennyh tkanej organizma. A.I. Toma, V.A. Elkin, V.V. Komarov, D.S. Dorohov, I.A. Toma, P.L. Altuhov (In Russian).
  12. Elkin V.A., Komarov V.V., Meshchanov V.P. Raspredelenie teplovogo polya v blizhnej zone koaksial'no-shchelevogo napravlennogo izluchatelya dlya mikrovolnovoj termodestrukcii novoobrazovanij. Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 6. S. 26–32 DOI: https://doi.org/10.18127/j20700784-202206-03 (In Russian).
  13. Sun, L., Peng. R.Y. Research progress in the effects of terahertz waves on biomacromolecules. Military Med. Res. 2021. V. 8. P. 28.
  14. Nguyen THP., Shamis Y., Croft RJ., Wood A., McIntosh RL., Crawford RJ., Ivanova EP. 18 GHz electromagnetic field induces permeability of gram-positive cocci. Sci Rep. 2015. № 5. P. 10980. DOI: http://dx.doi.org/10.1038/srep10980.
  15. Savel'eva E.N. Vliyanie izlucheniya SVCh na reproduktivnuyu sposobnost' koloradskogo zhuka. Samarskaya gosudarstvennaya sel'skohozyajstvennaya akademiya. AGRO XXI. 2009. № 7–9. S. 30–31 (In Russian).
  16. Zav'yalov M.A., Lomachinskij V.A., Nikonov A.O., Prokopenko A.V., Filippovich V.P. Issledovanie neteplovogo vozdejstviya elektromagnitnyh kolebanij SVCh- diapazona na drozhzhevye kul'tury. Materialy nauch. konf. «KryMiKo». 2008. S. 842–843 (In Russian).
  17. Epstein M.A., Cook H.F. The Effects of Microwaves on the Rous No. 1 Fowl Sarcoma Virus. Brit. J. Cancer 5. 1951. V. 5 (2). P. 244-251.
  18. Lyscov V.N., Frank-Kameneckij D.A., ShChedrina M.V. Dejstvie santimetrovyh radiovoln na vegetativnye kletki, spory i transformiruyushchuyu DNK. Biofizika. 1965. T. H. Vyp.1. C. 136–139 (In Russian).
  19. Rostov V.V., Bolshakov M.A., Buldakov N.V., Cherdyntseva N.V., Eltchaninov A.A., Litvyakov N.V., Klimov A.I., Korovin S.D. Suppression of division of tumor cells exposured to nanosecond powerful microwave or X-ray pulse trains. Proc. of 2-nd European pulsed power simposium, DESY, Hamburg, Germany. 2004. P. 62–66.
  20. Buldakov M.A., Litvyakov N.V., Astapenko A.N., Afanas'ev K.V. Vliyanie impul'sno-periodicheskogo SVCh-izlucheniya na opuholevye i normal'nye kletki. Sibirskij onkologicheskij zhurnal. 2007. Vyp. S2. S. 26–27 (In Russian).
  21. Bol'shakov M.A. Fiziologicheskie mekhanizmy dejstviya radiochastotnyh elektromagnitnyh izluchenij na bioob"ekty raznyh urovnej organizacii: Dis. … dokt. biol. nauk: 03.00.13. Sibirskij gosudarstvennyj medicinskij universitet. 2002. 319 s. (In Russian)
  22. Bol'shakov M.A., Alekseev S.I. Vliyanie impul'snogo mikrovolnovogo oblucheniya na elektricheskuyu aktivnost' nejronov mollyuskov. Izv. AN SSSR. Ser.: Biologicheskaya. 1987. № 2. S. 312–314 (In Russian).
  23. Knyazeva I.R., Lindt T.A., Bol'shakov M.A., Evdokimov E.V. K voprosu ob embriotropnom dejstvii impul'sno-modulirovannogo elektromagnitnogo izlucheniya. Mezhregional'naya nauch. konf. Sibiri i Dal'nego Vostoka, posvyashchennaya 150-letiyu so dnya rozhdeniya akad. Ivana Petrovicha Pavlova. 25–26 noyabrya 1999 g. Tomsk. S. 98–100 (In Russian).
  24. Knyazeva I.R., Bol'shakov M.A., Lindt T.A., Goncharik A.O., Evdokimov E.V. Sochetannoe dejstvie impul'sno-modulirovannogo EMI i povyshennoj temperatury na embriony drozofily. Ekologicheskij aspekt. Regional'nye problemy ekologii i prirodopol'zovaniya: Materialy gorodskoj konferencii molodyh uchenyh i specialistov, 25–26 noyabrya 1999 g. Tomsk, Rossiya. 2000. S. 75–77 (In Russian).
  25. Bolshakov M.A., Evdokimov E.V., Goncharic A.O., Dugaev S.P., Gunin A.V., Klimov A.I., Korovin S.D., Pegel I.V., Rostov V.V. Viological effects of repetitevely-pulsed high-power microwave radiation. Book of abstracts “Euroem 2000”. Edinburg. 2000. P. 99.
  26. Bolshakov M.A., Bugaev S.P., Goncharik A.O., Gunin A.V., Evdokimov E.V., Klimov A.I., Korovin S.D., Pegel I.V., Rostov V.V. Effect of high-power microwave radiation with nanosecond pulse duration on some biological objects. Doklady Biophysics. 2000. V. 370–372.
    P. 21–24.
  27. Bolshakov M.A., Bugaev S.P., Elchaninov A.A., Evdokimov E.V., Goncharik A.O., Gunin A.V., Klimov A.I., Knyazeva I.R., Korovin S.D., Kutenkov O.P., Pegel I.V., Rostov V.V. Effect of repetitive nanosecond HPM pulses on some biological objects. 1st International Congress on radiation physics, high current electronics, and modification of materials: proceedings. Tomsk, Russia. 24–29 September 2000. V. 2.: 12-th symposium on high current electronics. P. 514–518.
  28. Bol'shakov M.A., Voskresenskij V.V., El'chaninov A.A., Klimov A.I., Knyazeva I.R., Korovin S.D., Pegel' I.V., Rostov V.V. Dejstvie moshchnyh SVCh-impul'sov nanosekundnoj dlitel'nosti na razvivayushchijsya organizm drozofily. Fiziologiya organizmov v normal'nom i ekstremal'nom sostoyaniyah: Sb. statej. Tomsk. 2001. S. 127–130 (In Russian).
  29. Bolshakov M.A., Eltchaninov A.A., Klimov A.I., Knyazeva I.R., Korovin S.D., Pegel I.V., Rostov V.V. Voskresensky V.V. Effect of nanosecond HPM pulses on individual development of drosophilas: estimation of comparative contribution by microwave and X-ray components. Modern techniques and technology: MTT’2001: proceedings of the 7th International Scientific and Practical Conference of Students, Post-Graduates and Young Scientists, February 26 – March 2, 2001. Tomsk, Russia. 2001. P. 151–154.
  30. Bolshakov M.A., Eltchaninov A.A., Klimov A.I., Knyazeva I.R., Korovin S.D., Pegel I.V., Rostov V.V. Voskresensky V.V. Effect of nanosecond HPM pulses on individual development of drosophilas: estimation of comparative contribution by microwave and X-ray component. KORUS 2001: The 5th Korea-Russia International Symposium on Science and Technology : proceedings, June 26 – July 3 2001. Tomsk, Russia. 2001. V. 3. P. 74–76.
  31. Bol'shakov M.A., Klimov A.I., Litvyakov N.V., Kushakova Yu.A., Korovin S.D., Rostov V.V., Cherdynceva N.V. Issledovanie vliyaniya kratkovremennogo vozdejstviya moshchnyh SVCh-impul'sov na opuholevye kletki mastocitomy R-815. Fiziologiya organizmov v normal'nom i ekstremal'nom sostoyaniyah: Sb. statej. Tomsk. 2001. S. 130–133 (In Russian).
  32. Bol'shakov M.A., Buldakov M.A., Klimov A.I., Litvyakov N.V., Korovin S.D., Rostov V.V., Cherdynceva N.V. Effekt vozdejstviya SVCh-izlucheniya impul'sami submikrosekundnoj dlitel'nosti na opuholevye kletki mastocitomy R-815.. Trudy III Mezhdunar. konf. “Elektromagnitnye polya i zdorov'e cheloveka. Fundamental'nye i prikladnye issledovaniya”, Moskva – S.-Peterburg, Rossiya. 2002 g. S. 54–56 (In Russian).
  33. Litvyakov N.V., Buldakov M.A., Cherdynceva N.V., Rostov V.V., Klimov A.I., Bol'shakov M.A. Vliyanie impul'sno-periodicheskogo SVCh-izlucheniya na sintez nukleinovyh kislot v opuholevyh kletkah. Radiacionnaya biologiya. Ser.: Radioekologiya. 2005. T. 45. № 4.
    S. 460–463 (In Russian).
  34. Bol'shakov M.A., Ivanova L.A., Klimov A.I., Knyazeva I.R., Korovin M.S., Rostov V.V. Izmenenie morfologicheskih i biohimicheskih pokazatelej pecheni myshej posle kratkovremennogo vozdejstviya impul'sno-periodicheskogo mikrovolnovogo izlucheniya. 6-j Mezhdunar. simpozium po elektromagnitnoj sovmestimosti i elektromagnitnoj ekologii: Materialy simpoziuma, 21–24 iyunya 2005 g. Sankt-Peterburg. 2005. S. 316–319 (In Russian).
  35. Knyazeva I.R., Bol'shakov M.A., Klimov A.I., Rostov V.V. Izuchenie biohimicheskih pokazatelej pecheni myshej posle vozdejstviya mikrovolnovogo izlucheniya: materialy. Tezisy dokladov V Sibirskogo fiziologicheskogo s"ezda. Tomsk. 2005. S. 60–61 (In Russian).
  36. Zharkova L.P., Afanas'ev K.V., Bol'shakov M.A., Knyazeva I.R., Rostov V.V. Ocenka vliyaniya impul'sno-periodicheskogo rentgenovskogo i mikrovolnovogo izluchenij na biologicheskie struktury s pomoshch'yu izmereniya impedansnyh harakteristik. Vestnik Tomskogo gosudarstvennogo universiteta. 2008. № 312. S. 180–183 (In Russian).
  37. Knyazeva I.R., Zharkova L.P., Kutenkov O.P., Rostov V.V., Bol'shakov M.A. Izuchenie funkcionirovaniya mitohondrij posle vozdejstviya impul'sno-periodicheskih mikrovolnovogo i rentgenovskogo izluchenij. Tezisy dokladov 21-go c"ezda Fiziologicheskogo obshchestva im. I.P. Pavlova. Moskva. 2010. S. 276–277 (In Russian).
  38. Zharkova L.P., Ivanov V.V., Knyazeva I.R., Kereya A.V., Kutenkov O.P., Rostov V.V., Bol'shakov M.A. Izmenenie ob"ema mitohondrij pecheni myshej posle vozdejstviya nanosekundnyh impul'sno-periodicheskih mikrovolnovogo i rentgenovskogo izluchenij. Vestnik Tomskogo gosudarstvennogo universiteta. Ser.: Biologiya. 2011. № 3 (15). S. 161–170 (In Russian).
  39. Medvedev M.A., Knyazeva I.R., Bol'shakov M.A., Zharkova L.P., Zakirova G.M., Gostyuhina A.A., Afanas'ev K.V., Klimov A.I., Rostov V.V. Issledovanie okislitel'nyh processov v tkanyah belyh myshej posle kratkovremennogo vozdejstviya impul'sno-periodicheskih mikrovolnovyh i rentgenovskih izluchenij. Nejrogumoral'nye mekhanizmy regulyacii organov pishchevaritel'noj sistemy v norme i pri patologii: Materialy mezhd. nauch. konf., posvyashchennoj 100-letiyu so dnya rozhdeniya prof. E.F. Larina. 2 noyabrya 2007 g. Tomsk. 2007. S. 89–94 (In Russian).
  40. Knyazeva I.R., Medvedev M.A., Zharkova L.P., Afanas'ev K.V., Bol'shakov M.A., Rostov V.V. Vozdejstvie impul'sno-periodicheskim mikrovolnovym i rentgenovskim izlucheniyami na eritrocity cheloveka. Byulleten' sibirskoj mediciny. 2019. № 1. S. 24–30 (In Russian).
  41. Shaw P., Kumar N., Mumtaz S., Lim J. S., Jang J. H., Kim D., Choi E. H. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Scientific Reports. № 11 (1). DOI:10.1038/s41598-021-93274-w.
  42. Ponne CT., Bartels PV. Interaction of electromagnetic energy with biological material – relation to food processing. Radiat Phys Chem. 1995. № 45. P. 591-607. DOI: http://dx.doi.org/ 10.1016/0969- 806X(94)00073-S.
  43. Samaranayake CP., Sastry SK. Effect of moderate electric fields on inactivation kinetics of pectin methylesterase in tomatoes: the roles of electric field strength and temperature. Food Eng. 2016. № 186. P. 17–26. DOI: http://dx.doi.org/10.1016/j. jfoodeng. 2016.04.006.
  44. Samaranayake CP., Sastry SK. Effects of controlled-frequency moderate electric fields on pectin methylesterase and polygalacturonase activities in tomato homogenate. Food Chem. 2016. № 199 P. 265–272. DOI: http://dx.doi.org/10.1016/j. foodchem. 2015.12.010.
  45. Jaeger H., Roth A., Toepfl S., Holzhauser T., Engel K, Knorr D., Vogel RF., Bandick N., Kulling S., Heinz V., Steinberg P. Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci Technol. 2016. № 55. P. 84-97. DOI: http://dx.doi.org/ 10.1016/j. tifs.2016.07.007.
  46. Zimmermann U., Pilwat G., Riemann F. Dielectric breakdown of cell membranes. Biophys J. 1974. № 14. P. 881–899. DOI: http://dx.doi.org/ 10.1016/S0006-3495(74)85956-4.
  47. Weaver J.C., Chizmadzhev Y.A. Theory of electroporation: a review. Bioelectrochem Bioenerg. 1996. № 41. P. 135–160. DOI: http://dx.doi. org/10.1016/S0302-4598(96)05062-3.
  48. Soghomonyan D., Trchounian K., Trchounian A. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria? Appl Microbiol Biotechnol. 2016. № 100. P. 4761–4771. DOI: http://dx.doi.org/10.1007/ s00253-016-7538-0.
  49. Kotnik T., Kramar P., Pucihar G., Miklavci D., Tarek M. Cell membrane electroporation – part 1: the phenomenon. IEEE Electr Insul Mag. 2012. № 28. P. 14–23. DOI: http://dx.doi.org/10.1109/ MEI.2012.6268438.
  50. Kozempel M., Cook RD., Scullen OJ., Annous BA. Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature. J. Food Process Preserv. 2000. № 24. P. 287–302. DOI: http://dx.doi.org/ 10.1111/ j.1745- 4549.2000.tb00420.x.
  51. Geveke DJ., Kozempel M., Scullen OJ., Brunkhorst C. Radio frequency energy effects on microorganisms in foods. Innov Food Sci Emerg Technol. 2002. № 3. P. 133–138.
  52. Loghavi L., Sastry SK., Yousef A.E. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnol Prog. 2009. № 25. P. 85–94. DOI: http://dx.doi.org/10.1021/bp.84.
  53. Park I.K., Kang D.H. Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157: H7, Salmonella enterica serovar typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice. Appl Environ Microbiol. 2013. № 79. P. 7122–7129. DOI: http://dx.doi.org/ 10.1128/aem.01818-13.
  54. Kim S.S., Choi W., Kang D.H. Application of low frequency pulsed ohmic heating for inactivation of foodborne pathogens and MS-2 phage in buffered peptone water and tomato juice. Food Microbiol. 2017. № 63. P. 22–27. DOI: http://dx.doi.org/10.1016/j. fm.2016.10.021.
  55. Kim S.S., Kang D.H. Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes. J. Appl. Microbiol. 2015. № 119. P. 475–486. DOI: http://dx. doi.org/10.1111/jam.12867.
  56. Kozempel M.F., Annous B.A., Cook R.D., Scullen O.J., Whiting R.C. Inactivation of microorganisms with microwaves at reduced temperatures. J. Food Prot. 1998. № 61. P. 582–585. DOI: http://dx.doi.org/ 10.4315/0362-028X-61.5.582.
  57. Ponne C.T., Bartels PV. Interaction of electromagnetic energy with biological material – relation to food processing. Radiat Phys Chem. 1995. № 45. P. 591–607. DOI: http://dx.doi.org/10.1016/0969- 806X(94)00073-S.
  58. Tian X., Yu Q., Wu W., Dai R. Inactivation of microorganisms in foods by ohmic heating: a review. J. Food Prot. 2018. № 81. P. 1093–1107. DOI: http://dx.doi.org/10.4315/0362-028X.JFP-17-343.
  59. Gulyaev Yu.V., Cherepenin V.A. O vozmozhnosti ispol'zovanii moshchnyh elektromagnitnyh impul'sov dlya obezzarazhivaniya bakteriologicheski zagryaznennyh ob"ektov. Zhurnal radioelektroniki. 2020. № 4. P. 11. DOI: 10/30898.1684-1719.2020.4.13 (In Russian).
  60. Gulyaev Yu.V., Taranov I.V., Cherepenin V.A. The Use of High-Power Electromagnetic Pulses on Bacteria and Viruses. Doklady Physics. 2020. № 65 (78). P. 230. DOI:10.1134/S1028335820070034.
  61. Gulyaev Yu.V., Taranov I.V., Cherepenin V.A. Ispol'zovanie moshchnyh elektromagnitnyh impul'sov dlya vozdejstviya na bakterii i virusy. Doklady RAN. Ser.: Fizika. Tekhnicheskie nauki. 2020. № 493. P. 15. DOI:10.31857/S2686740020040069 (In Russian).
  62. Gulyaev Yu.V., Meshchanov V.P., Kac B.M., Koplevackij N.A., Lopatin A.A., Sayapin K.A., Elkin V.A., Komarov V.V., Bajburin V.B., Rytik A.P. Vozdejstvie impul'snym SVCh-izlucheniem na obrazcy pishchevoj produkcii s cel'yu uvelicheniya pokazatelej ee mikrobiologicheskoj bezopasnosti i srokov hraneniya. Problemy osobo opasnyh infekcij. 2022. № 3. S. 70–74 (In Russian).
  63. Kaczmarczyk L. S., Marsay K.S., Shevchenko S., Pilossof M., Levi N., Einat M., Oren M., Gerlitz G. Corona and polio viruses are sensitive to short pulses of W-band gyrotron radiation. Environmental Chemistry Letters. 2021. V. 19. Is. 6. P. 1–6.
Date of receipt: 20.09.2023
Approved after review: 04.10.2023
Accepted for publication: 20.10.2023