A.N. Briko1, A.V. Kobelev2, A.N. Dmitriev3, A.N. Tikhomirov4, S.I. Shchukin5, K.V. Kotenko6, I.I. Eremin7
1-5 Moscow Bauman State Technical University (Moscow, Russia)
1,6,7 Petrovsky National Research Center of Surgery (Moscow, Russia)
1 briko@bmstu.ru
Human adipose tissue contains adipose stem cells that can differentiate into various types of connective tissue cells when growth factors appear. This effect is currently actively used in regenerative and cosmetic medicine. The process of isolating adipose stem cells involves extracting the stromal vascular fraction. An urgent task is to develop a mechanical method for isolating the stromal-vascular fraction, which is based on damage to the stromal-vascular matrix using mechanical action and removal of large adipocytes. The advantage of this method is the absence of the use of special expensive enzymatic solutions.
Development of a laboratory stand for automated mechanical production of SVF with controlled exposure for standard designs of medical devices used in practice, intended for mechanical processing of adipose tissue.
The design of the laboratory stand makes it possible to evaluate the viscosity of lipoaspirate in real time, making it possible to carry out studies to quantitatively substantiate the parameters of the procedure for mechanically obtaining the stromal-vascular fraction to obtain a product with the required characteristics, depending on the initial quality of the lipoaspirate.
The developed laboratory stand makes it possible to study the processes and parameters that must be achieved for effective mechanical separation of lipoaspirate.
Briko A.N., Kobelev A.V., Dmitriev A.N., Tikhomirov A.N., Shchukin S.I., Kotenko K.V., Eremin I.I. Laboratory stand for assessing the parameters of mechanical production of the stromal-vascular fraction. Biomedicine Radioengineering. 2023. V. 26. № 5. Р. 102-113. DOI: https://doi.org/10.18127/j15604136-202305-11 (In Russian).
- Vargel İ. et al. Autologous adipose-derived tissue stromal vascular fraction (AD-tSVF) for knee osteoarthritis. International Journal of Molecular Sciences. 2022. V. 23. № 21. P. 13517.
- Zuk P.A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering. 2001. V. 7. № 2. P. 211–228.
- Pavlov V. i soavt. Sovremennyye vozmozhnosti klinicheskogo primeneniya stromalno-vaskulyarnoy fraktsii zhirovoy tkani. Meditsinskiy vestnik Bashkortostana. 2020. T. 15. № 6 (90). S. 142–153. (in Russian).
- Qiu H. et al. The effect of different diameters of fat converters on adipose tissue and its cellular components: selection for preparation of nanofat. Aesthetic Surgery Journal. 2021. V. 41. № 11. P. 1734–1744.
- Tiryaki T. et al. A 3-step mechanical digestion method to harvest adipose-derived stromal vascular fraction:. Plastic and reconstructive surgery - global open. 2020. V. 8. № 2. P. e2652.
- Tiryaki K.T. et al. In-vitro comparative examination of the effect of stromal vascular fraction isolated by mechanical and enzymatic methods on wound healing. Aesthetic Surgery Journal. 2020. V. 40. № 11. P. 1232–1240.
- Tiryaki T. et al. Hybrid stromal vascular fraction (Hybrid-SVF): A new paradigm in mechanical regenerative cell processing. Plastic and Reconstructive Surgery - Global Open. 2022. V. 10. № 12.
- Jiang S. et al. Fat grafting for facial rejuvenation using stromal vascular fraction gel injection. Clinics in Plastic Surgery. 2020. V. 47. № 1. P. 73–79.
- Yao Y. et al. Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue–derived injectable for stem cell therapy. Plastic and Reconstructive Surgery. 2017. V. 139. № 4. P. 867–879.
- Ye Y. et al. Phenotypic and cellular characteristics of a stromal vascular fraction/extracellular matrix gel prepared using mechanical shear force on human fat. Front. Bioeng. Biotechnol. 2021. V. 9. P. 638415.
- Zhang Y. et al. Contouring and augmentation of the temple using stromal vascular fraction gel grafting. Frontiers in Surgery. 2022. P. 1240.
- Sese B. et al. Nanofat cell aggregates: a nearly constitutive stromal cell inoculum for regenerative site-specific therapies. Plastic and reconstructive surgery. Plast Reconstr Surg. 2019. V. 144. № 5.
- Banyard D.A. et al. Phenotypic analysis of stromal vascular fraction after mechanical shear reveals stress-induced progenitor populations. Plast. Reconstr. Surg. 2016. V. 138. № 2. P. 237e–247e.
- Trivisonno A. et al. Intraoperative strategies for minimal manipulation of autologous adipose tissue for cell- and tissue-based therapies: Concise Review. Stem Cells Translational Medicine. 2019. V. 8. № 12. P. 1265–1271.
- Yatchenko E., Rakcheyeva T. Metody modelirovaniya gemodinamicheskikh protsessov na primere realnoy geometrii sosuda cheloveka. Biomeditsinskaya radioelektronika. 2018. № 3. S. 12–18. (in Russian).
- Karo K. i soavt. Mekhanika krovoobrashcheniya. M.: Mir. 1981. (in Russian).
- Pedli T. Gidrodinamika krupnykh krovenosnykh sosudov. M.: Mir. 1983. (in Russian).
- Tikhomirov A. i soavt. Ispolzovaniye konechno-elementnogo analiza dlya verifikatsii sfericheskoy matematicheskoy mo-deli impedansnykh izmereniy. Biomeditsinskaya radioelektronika. 2015. № 7. S. 9–14. (in Russian).
- Serway R.A., Jewett J.W. Physics for scientists and engineers. Cengage learning. 2018.
- Shcherbachev A. i soavt. Razrabotka modulya izmereniya obyema iskusstvennogo zheludochka serdtsa. Biomeditsinskaya radioelektronika. 2020. T. 23. № S. P. 48–54. (in Russian).
- Patel P.N., Smith C.K., Patrick C.W. Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue. J. Biomed. Mater. Res. 2005. V. 73. № 3. P. 313–319.