350 rub
Journal Biomedical Radioelectronics №5 for 2023 г.
Article in number:
Irradiator for antibacterial photodynamic therapy
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202305-10
UDC: 616-71
Authors:

А.S. Balashova1, L.V. Zhorina2

1,2 Bauman Moscow State Technical University (Moscow, Russia)

2 larisa7777@li.ru

Abstract:

Today, there is an urgent problem of bacterial resistance to antibacterial drugs and the need to develop new methods to combat bacterial skin diseases, including acne of varying severity.

Photodynamic exposure can be a successful alternative to classical treatment, since it allows it to accelerate, eliminate the occurrence of side effects often observed during antibiotic treatment. The purpose of the work is to develop a device for antibacterial (antimicrobial) photodynamic therapy at home.

The paper describes the development and components of the device for antibacterial photodynamic therapy based on the photosensitizer (PS) RadaGel. The device includes a matrix irradiator on LEDs with radiation at wavelengths of 405 and 640 nm which have different penetration depths into the skin and fall into the PS absorption bands. The additional choice of blue light is also due to the fact that it falls into the Sore band of porphyrins produced by the acne-causing bacteria Cutibacterium acnes.

The location of the LEDs for the intensity of skin illumination required for therapy and the exposure time were calculated.

Pages: 96-101
For citation

Balashova A.S., Zhorina L.V. Irradiator for antibacterial photodynamic therapy. Biomedicine Radioengineering. 2023. V. 26. № 5. Р. 96-101. DOI: https://doi.org/10.18127/j15604136-202305-10 (In Russian).

References
  1. Zhorina L.V., Zalevskaya L.I., Zalevskaya O.I., Zmiyevskoy G.N. Issledovaniye dozovykh kharakteristik preparata Radakhlo-rin pri nablyudenii fotodinamicheskogo effekta v modelnykh biosredakh. Tekhnologii zhivykh sistem. 2012. № 5. S. 14–23. (in Russian).
  2. Zhorina L.V., Zmiyevskoy G.N. Sravneniye fotodinamicheskogo vozdeystviya s uchastiyem AlFtsS2 i Bengalskogo rozovogo na eritrotsity. Tekhnologiya zhivykh sistem. 2008. T.5. № 2–3. S. 11–18. (in Russian).
  3. Hamblin M.R., Abrahamse H. Can light-based approaches overcome antimicrobial resistance? Drug Dev. Res. 2019. V. 80. № 1. P. 48–67. DOI:10.1002/ddr.21453
  4. de Annunzio S.R., de Freitas L.M., Blanco A.L., da Costa M.M., Carmona-Vargas C.C., de Oliveira K.T., Fontana C.R. Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy. Journal of photochemistry and photobiology. 2018. V. 178. P. 545–550. https://doi.org/10.1016/j.jphotobiol.2017.11.035
  5. Bondarenko V.M., Konovalova G.N., Nikolayeva E.V., Kuzikov A.N., Likhacheva E.V. Effekt fotodinamicheskogo vozdeystviya metallokompleksov proizvodnykh khlorina e6 na uslovno-patogennyye bakterii s ispolzovaniyem sverkhyarkikh svetodiodov «kholodnogo» belogo sveta. Lazernaya Meditsina. 2008. T. 12. S. 26–30. (in Russian).
  6. Tuchina E.S., Tuchin V.V., Altshuler G.B., Yaroslavskiy I.V. Fotodinamicheskoye vozdeystviye krasnogo (625 nm) i infrakrasnogo (805 nm) izlucheniya na bakterii P. Acnes. obrabotannyye fotosensibilizatorami. Izvestiya Saratovskogo universiteta. 2008. T. 8. Ser. Fizika. Vyp. 1. S. 21–26. (in Russian).
  7. Galkina E.M., Utts S.R. Fototerapiya akne s pomoshchyu lazernogo izlucheniya sinego diapazona (405 nm). Prakticheskaya meditsina. 2013. № 1–4 (73). S. 72–76. (in Russian).
  8. Zhorina L.V., Trushina V.V. Razrabotka biotekhnicheskoy sistemy dlya lecheniya vospaleniy. vyzvannykh C. Acnes. Biomeditsinskaya radioelektronika. 2022. T. 25. № 5. S. 79–84. DOI: https://doi.org/10.18127/j15604136-202205-09 (In Russian).
  9. GOST IEC 60335-2-27-2014 Bezopasnost bytovykh i analogichnykh elektricheskikh priborov. Chast 2–27. Chastnyye trebovaniya k priboram ultrafioletovogo i infrakrasnogo izlucheniy dlya ukhoda za kozhey. (in Russian).
  10. GOST IEC 60601-2-22-2011 Izdeliya meditsinskiye elektricheskiye. Chast 2–22. Chastnyye trebovaniya k bezopasnosti pri rabote s khirurgicheskim. kosmeticheskim. terapevticheskim i diagnosticheskim lazernym oborudovaniyem. (in Russian).
  11. Elektronnyy resurs. Rezhim dostupa: http://www.radapharma.ru/produkciya/20-radagel-gel-dlya-provedeniya-svetoterapevticheskih-procedur-05.html (data obrashcheniya: 11.08.2023). (in Russian).
  12. Wang X., Xiong J., Hu X., Li Q. Implementation and uniformity calibration of LED array for photodynamic therapy. J. Innov. Opt. Heal. Sci. 2022. V. 15(04). P. 2240004.
Date of receipt: 25.08.2023
Approved after review: 21.09.2023
Accepted for publication: 02.10.2023