350 rub
Journal Biomedical Radioelectronics №5 for 2023 г.
Article in number:
System for pulse flow simulation in large vessels at CT-angiographic studies
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202305-09
UDC: 612.133, 611.08
Authors:

M.R. Kodenko1, A.N. Arkhangelsky2, A.V. Samorodov3, R.V. Reshetnikov4

1,4 Research and practical clinical center for diagnostics and telemedicine technologies
of the Moscow health care department (Moscow, Russia)

1–3 Bauman Moscow State Technical University (Moscow, Russia)

1 m.r.kodenko@yandex.ru, 2 Ar-han@yandex.ru, 3 avs@bmstu.ru, 4 reshetnikov@fbb.msu.ru

Abstract:

Research in the field of the optimization and improvement of computed tomographic angiography (CTA) methods involves the use of biorelevant physical models of hemodynamics.

The review of current analogues demonstrates their surgical specialization: most devices simulate myocardial function in order to reproduce hemodynamics in the vascular system of a particular patient. The personalization of such models, necessary for preoperative planning, requires accurate reproduction of the vascular system as a whole, which inevitably makes such devices more complex and expensive.

The objective of this study is to create a system, allowing simulation of the pulse blood flow at the particular segment of large vessels for CTA procedure.

The proposed approach allows reproducing flow parameters in a selected vascular segment, simplifying the task of modeling due to the possibility of direct connection of an isolated section of the vascular system. Technical implementation of the device includes: a unit of pulse wave generation with a control board, voltage-frequency converter and recirculation pump; and the test-object representing a model of an extended abdominal aortic segment.

The test-object is made of tissue-imitating materials Dragon skin 30 and TPU 95A reproducing both biomechanical and X-ray properties of the large arterial vessel. Experimental study of the developed system was performed on the Toshiba Aquilion Prime SP scanner with the following parameters: scanning protocol - "body", slice thickness - 1 mm, tube voltage and current - 120 kV and 80 mAs, respectively.

The results obtained during the experimental study of the mockup sample demonstrate the reproducibility of the flow parameters in the physiological frequency range of pulsations 0.5 - 1.5 Hz: 60 - 130 mmHg for pressure and 0.25 - 0.47 m/s for flow velocity. Spearman correlation coefficient between generated and reference pulse wave profile was 0.96. Comparison of X-ray density values of the test object and the injected contrast agent demonstrates normal distribution of data (p-value 0.86 Shapiro-Wilk test) and no statistically significant difference (p-value 0.89 Student's t-criterion); 95% CI for X-ray density of test object material is (112; 125) HU, which agrees well with the published data.

The obtained results can be used for the development and optimization of CTA scanning protocols, as well as for the development of surgical simulators.

Pages: 85-95
For citation

Kodenko M.R., Arkhangelsky A.N., Samorodov A.V., Reshetnikov R.V. System for pulse flow simulation in large vessels at CT-angiographic studies. Biomedicine Radioengineering. 2023. V. 26. № 5. Р. 85-95. DOI: https://doi.org/10.18127/j15604136-202305-09 (In Russian).

References
  1. Erbel R. et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2014. V. 35. № 41. P. 2873–2926.
  2. Robinson J.D. et al. Imaging of blunt abdominal solid organ trauma. Seminars in roentgenology. 2016. V. 51. № 3. P. 215–229. DOI: 10.1053/j.ro.2015.12.003
  3. Barnard R. et al. Machine Learning for Automatic Paraspinous Muscle Area and Attenuation Measures on Low-Dose Chest CT Scans. Acad. Radiol. 2019. V. 26. № 12. P. 1686–1694. DOI: 10.1016/j.acra.2019.06.017
  4. Shablony protokolov opisaniya issledovaniy po spetsialnosti «Rengenografiya» magnitno-rezonansnaya tomografiya. URL: https://trauma.ru/content/articles/detail.php?ELEMENT_ID=45874 (data obrashcheniya: 25.03.2023). (in Russian).
  5. Faggioni L., Gabelloni M. Iodine concentration and optimization in computed tomography angiography: current issues. Investigative Radiology. 2016. V. 51. № 12. P. 816–822. DOI: 10.1097/RLI.000000000000028
  6. Cochran S.T. Anaphylactoid reactions to radiocontrast media. Current allergy and asthma reports. 2005. V. 5. № 1. P. 28–31.
  7. Sokolova I.V. Serdtse kak gemodinamicheskiy nasos s pozitsii teorii «aktivnoy diastoly». Biomeditsinskaya radioelektronika. 2013. № 3. S. 10–20. (in Russian).
  8. Gudkov A.G., Naraykin O.S. Innovatsii – osnovnoy faktor razvitiya meditsinskoy tekhniki. Biomeditsinskaya radioelektronika. 2012. № 12. S. 3–8. (in Russian).
  9. Meess K.M. et al. 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system. Medical imaging 2017: imaging informatics for healthcare, research, and applications. 2017. V. 10138.
    P. 159–172. DOI: 10.1117/12.2253902
  10. Kärkkäinen J.M. et al. Simulation of endovascular aortic repair using 3D printed abdominal aortic aneurysm model and fluid pump. Cardiovascular and Interventional Radiology. 2019. V. 42. P. 1627–1634. DOI: 10.1007/s00270-019-02257-y
  11. Your heart rate. British Heart Foundation. URL: https://www.bhf.org.uk/informationsupport/how-a-healthy-heart-works/your-heart-rate (data obrashcheniya: 24.03.2023).
  12. CieNTi/serial_port_plotter. GitHub. URL: https://github.com/CieNTi/serial_port_plotter (data obrashcheniya: 24.01.2023).
  13. Terminal 1.9b-rabotayem s COM-portom/Skachat Terminal. MicroPi. 2016. URL: https://micro-pi.ru/terminal-1-9b (data obrashcheniya: 24.01.2023). (in Russian).
  14. Datchik davleniya gaza 0.3-1.2 atm., MS5837-02BA. AO «ChIP i DIP» — pribory. radiodetali i elektronnyye komponenty. URL: https://www.chipdip.ru/product0/8009542627?ysclid=ljabfdobmz480929012 (data obrashcheniya: 24.10.2022). (in Russian).
  15. aYF-S201C Transparent. Datchik raskhoda vody dlya Arduino proyektov. 1-30l/min. rezba G1/2.. AO «ChIP i DIP» — pribory. radiodetali i elektronnyye komponenty. URL: https://www.chipdip.ru/product/yf-s201c-transparent?ysclid=ljabg2ffq3289878387 (data obrashcheniya: 24.10.2022). (in Russian).
  16. Barrett J.F., Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004. V. 24. № 6. P. 1679–1691. DOI: 10.1148/rg.246045065
  17. Omnipak – instruktsiya po primeneniyu. dozy. pobochnyye deystviya. otzyvy o preparate: rastvor dlya inyektsiy. 350 mg yoda/ml. URL: https://www.rlsnet.ru/drugs/omnipak-2313 (data obrashcheniya: 24.02.2023). (in Russian).
  18. Parashin V.B., Itkin G.P. Biomekhanika krovoobrashcheniya. Izd-vo MGTU im. N.E. Baumana. 2005. S. 10–50. (in Russian).
  19. Bril K.R., Khovrin V.V. Magnitno-rezonansnaya tomografiya v otsenke kriteriyev zhestkosti stenki aorty. Digital Diagnostics. 2022. T. 3. № 1S. C. 10–11. DOI: 10.17816/DD105655 (in Russian).
  20. García-Herrera C.M., Atienza J.M., Rojo F.J. et al. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med. Biol. Eng. Comput. 2012. V. 50. P. 559–566. DOI: 10.1007/s11517-012-0876-x
  21. Tanaka H., Unno N., Suzuki Y., Sano H., Yata T., Urano T. Hypoperfusion of the Aortic Wall Secondary to Degeneration of Adventitial Vasa Vasorum Causes Abdominal Aortic Aneurysms. Current drug targets. 2018. V. 19(11). P. 1327–1332. DOI: 10.2174/1389450119666180122154409
  22. Heistad D.D., Marcus M.L. Role of vasa vasorum in nourishment of the aorta. Journal of Vascular Research. 1979. V. 16(5). P. 225–238.
  23. Greenway K., Gaillard F., Bell D. et al. Hounsfield unit. Reference article. Radiopaedia. 2015. DOI: 10.53347/rID-38181
  24. WebPlotDigitizer – Extract data from plots, images, and maps. URL: https://automeris.io/WebPlotDigitizer/ (data obrashcheniya: 24.02.2023).
  25. STM32F407G-DISC1. Otladochnaya plata na baze MCU STM32F407VGT6 (ARM Cortex-M4). ST-LINK/V2-A. accelerometer. DAC. ST Microelectronics. AO «ChIP i DIP» — pribory. radiodetali i elektronnyye komponenty. URL: https://www.chipdip.ru/product/stm32f407g-disc1-2?ysclid=ljaca6tbp4971981660 (data obrashcheniya: 24.02.2023). (in Russian).
  26. Preobrazovatel chastoty SPE401B21G (0.4KW. 220V. 1PH). AO "Intek". URL: https://www.intek.ru/catalog/preobrazovateli _chastoty_intek_spe/19536/?ysclid=ljacb3pwkd511404334 (data obrashcheniya: 24.02.2023). (in Russian).
  27. Group I.T.A. Retsirkulyatsionnyy nasos 12019637 dlya Bosch Siemens v Moskve. ITA-Group. URL: https://ita-group.ru/ (data obrashcheniya: 24.02.2023). (in Russian).
  28. Osnovnyye metody izgotovleniya silikonovykh izdeliy. «Rezinoplast». URL: https://rezinaplast.ru/articles/tehnologii-proizvodstva-silikonovyh-izdeliy- (data obrashcheniya: 24.02.2023). (in Russian).
  29. Kwon J., Ock J., Kim N. Mimicking the mechanical properties of aortic tissue with pattern-embedded 3D printing for a realistic phantom. Materials. 2020. V. 13. № 21. P. 5042.
  30. Jonovic K. et al. Evaluation of radiodensity and dimensional stability of polymeric materials used for oral stents during external beam radiotherapy of head and neck carcinomas. Clinical and translational radiation oncology. 2022. V. 36. P. 31–39.
  31. Inobitek. Programmnoye obespecheniye dlya meditsiny: Inobitek DICOM-Prosmotrshchik. Inobitek Web DICOM-Prosmotrshchik. Inobitek DICOM-Server (PACS). URL: https://inobitec.com/ (data obrashcheniya: 24.02.2023).
  32. Posit. URL: https://www.posit.co/ (дата обращения: 24.12.2022).
  33. Patent US8926333B2 USA. Device, system, and method for simulating blood flow. J. Vozenilek, T. Cusack, S. Admani, E. Bethke, M. Regan. URL: https://patents.google.com/patent/US8926333B2/en (дата обращения: 24.02.2023).
Date of receipt: 22.08.2023
Approved after review: 21.09.2023
Accepted for publication: 02.10.2023