350 rub
Journal Biomedical Radioelectronics №5 for 2023 г.
Article in number:
The system of allocation of the breathing pattern from thoracic bioimpedance signals
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202305-07
UDC: 57.089.2
Authors:

A. Hammoud1, A.N. Briko2, P.E. Chibizov3, S.I. Shchukin4

1–4 Bauman Moscow State Technical University (Moscow, Russia)

1 hammoud@bmstu.ru, 2 briko@bmstu.ru, 3 chibizovpe@student.bmstu.ru, 4 schookin@bmstu.ru

Abstract:

The urgent need for advanced respiratory monitoring systems has grown significantly due to the recent surge of Covid-19. To ascertain aspects such as respiratory rhythm, breathing cycle, and inhalation and exhalation phases, the usage of transthoracic bio-impedance signals has proven to be effective. However, the method often requires numerous electrodes which must be positioned in inconvenient areas for the patient during extended periods of monitoring.

This study investigates the feasibility of tracking the respiratory rhythm and pattern using bio-impedance signals collected from various thoracic regions through four channels. These channels are located at comfortable points for patients, facilitating long-term monitoring.

The experiment revealed that the right thoracic channel demonstrated a stable signal and the highest correlation with the respiratory pattern derived from the transthoracic channel. Therefore, the study suggests its use for prolonged monitoring.

Utilizing the right thoracic channel enables continuous monitoring of respiratory system functionality during work or sleep. Understanding the breathing phase is vital in studies concerning cardiac output. With this method, inhalation and exhalation cycles can be accurately determined when examining the vascular tone in limbs.

Pages: 68-74
For citation

Hammoud A., Briko A.N., Chibizov P.E., Shchukin S.I. The system of allocation of the breathing pattern from thoracic bioimpedance signals. Biomedicine Radioengineering. 2023. V. 26. № 5. Р. 68-47. DOI: https://doi.org/10.18127/j15604136-202305-07 (In Russian).

References
  1. Islam S.M.S., Purnat T.D., Phuong N.T.A., Mwingira U., Schacht K., Fröschl G. Non‐Communicable Diseases (NCDs) in developing countries: a symposium report. Globalization and Health. 2014. V. 10. № 1. P. 1–8. DOI: 10.1186/s12992-014-0081-9
  2. Couser W.G., Remuzzi G., Mendis S., Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011. V. 80. № 12. P. 1258–1270. DOI: 10.1038/ki.2011.368
  3. Jones N. How COVID-19 is changing the cold and flu season. Nature. 2020. V. 588. № 7838. P. 388–390. DOI: 10.1038/d41586-020-03519-3
  4. Faust J.S., Del Rio C. Assessment of deaths from COVID-19 and from seasonal influenza. JAMA Internal Medicine. 2020.
    V. 180. № 8. P. 1045–1046. DOI: 10.1001/jamainternmed.2020.2306
  5. Malakhov A.I., Tikhomirov A.N., Shchukin S.I., Kudashov I.A., Kobelev A.V., Maslennikov M.A. Primeneniye prekardialnoy reografii pri vyyavlenii aritmiy serdtsa. Biomeditsinskaya radioelektronika. 2013. № 10. S. 25–28. (in Russian).
  6. Tikhomirov A.N., Malakhov A.I., Shchukin S.I., Kobelev A.V., Kudashov I.A., Maslennikov M.A., Petrov V.I. Otsenka vliyaniya udelnogo elektricheskogo soprotivleniya tkani verkhnego sloya na impedansnyye prepardialnyye izmereniya. Biomeditsinskaya radioelektronika. 2013. № 10. S. 20–24. (in Russian).
  7. Malakhov A.I., Tikhomirov A.N., Shchukin S.I., Otstavnov S.S., Nikolayev A.P. Issledovaniya gemodinamiki pravogo pred-serdiya s pomoshchyu elektroimpedansnykh metodov dlya patsiyentov s fibrillyatsiyey predserdiy. Biomeditsinskaya radio-elektronika. 2015. № 7. S. 5–8. (in Russian).
  8. Yang F., Patterson R.P. The contribution of the lungs to thoracic impedance measurements: A simulation study based on a high resolution finite difference model. Physiol. Meas. 2007. V. 28. № 7. P. S153. DOI: 10.1088/0967-3334/28/7/S12
  9. Yang F., Patterson R.P. A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions. Ann. Biomed. Eng. 2008. V. 36. № 5. P. 762–768. DOI: 10.1007/s10439-008-9469-0
  10. Blanco-Almazan D., Groenendaal W., Catthoor F., Jane R. Wearable bioimpedance measurement for respiratory monitoring during inspiratory loading. IEEE Access. 2019. V. 7. P. 89487–89496. DOI: 10.1109/ACCESS.2019.2926841
  11. Belyaev K.R., Kuzminykh N.Yu. Methods for isolating the respiratory pattern in systems for non-invasive monitoring of central hemodynamic parameters. Biomed. Radioelectronics. 1999. № 3. P. 33–46.
  12. Hammoud A., Tikhomirov A., Myasishcheva G., Shaheen Z., Volkov A., Briko A., Shchukin S. Multi-channel bioimpedance system for detecting vascular tone in human limbs: an approach. Sensors. 2022. V. 22. № 1. Article 138. DOI: 10.3390/s22010138
  13. Drozhzhennikova E., Kobelev A., Sergeev I. Development of an instrumentation amplifier for rheographic measurements. 2021 Ural Symp. on Biomed. Eng. Radioelectronics and Inf. Technol. (USBEREIT). 2021. P. 110–112. DOI: 10.1109/USBEREIT51232. 2021.9454966
  14. Kobelev A.V., Shchukin S.I., Leonhardt S. Application of tetrapolar electrode systems in electrical impedance measurements. Biomed. Eng. 2019. V. 52. № 6. P. 383–386. DOI: 10.1007/s10527-019-09852-w
  15. Mugeb A.-H., Larvushkin A. Model-based assessment of brachial artery diameter from electrical impedance measurement. 2021 Ural Symp. on Biomed. Eng., Radioelectronics and Inf. Technol. (USBEREIT). 2021. P. 98–101. DOI: 10.1109/USBEREIT51232. 2021.9455041
  16. Dawson M.F., Salerno A. Stroke volume variation. Atlas of Crit. Care Echocardiography. 2021. P. 85–87. DOI: 10.1007/978-3-030-74687-2_15
  17. Naidu S.M.M., Pandey P.C., Bagal U.R., Hardas S.P. Beat-to-beat estimation of stroke volume using impedance cardiography and artificial neural network. Med. and Biol. Eng. and Comput. 2018. V. 56. № 6. P. 1077–1089. DOI: 10.1007/s11517-017-1752-5
  18. Hammoud A., Tikhomirov A.N., Shaheen Z. Automatic Bio-impedance Signal Analysis: Smoothing Processes Efficacy Evaluation in Determining the Vascular Tone Type. 2021 Ural Symp. on Biomed. Eng. Radioelectronics and Inf. Technol. (USBEREIT). 2021. P. 113–116. DOI: 10.1109/USBEREIT51232.2021.9454965
  19. Strickert M., Schleif F.M., Seiffert U., Villmann T. Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial. 2008. V. 12. № 37. P. 37–44. DOI: 10.4114/ia.v12i37.956
Date of receipt: 25.08.2023
Approved after review: 20.09.2023
Accepted for publication: 02.10.2023