350 rub
Journal Biomedical Radioelectronics №5 for 2023 г.
Article in number:
Evaluation of the informativeness of electrical impedance measurements in determining the vascular tone of the lower limbs in varicose veins
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202305-05
UDC: 57.089.2
Authors:

A. Hammoud1, A.N. Tikhomirov2, A.A. Latypova3, S.I. Shchukin4

1–4 Bauman Moscow State Technical University (Moscow, Russia)

1 hammoud@bmstu.ru, 2 tikhomirov.an@bmstu.ru, 3 latypova@bmstu.ru, 4 schookin@bmstu.ru

Abstract:

There is a continuous increase in the incidence of cardiovascular diseases in the world. Therefore, the study of new methods for diagnosing cardiovascular diseases is a very important task. Early diagnosis and evaluation of the effectiveness of treatment are among the most important tasks. In this work, we study changes in vascular compliance and changes in vascular tone of the lower extremities in a patient diagnosed with an early stage of varicose veins. The study is based on recording the bioimpedance signals of the lower extremities and their parts using the Rio-32 multichannel device. Registration in the monitoring system takes place in two stages: the first in a state of relaxation, and the second after applying a local massage on one of the legs for five minutes. The results indicate a change in the type of vascular tone of the lower extremities after the massage, while the type of vascular tone changes and shifts in average towards the normotonic type. The method proposed in this study makes it possible to quantitatively and qualitatively assess changes in the tone of the vessels of the extremities.

Pages: 45-58
For citation

Hammoud A., Tikhomirov A.N., Latypova A.A., Shchukin S.I. Evaluation of the informativeness of electrical impedance measurements in determining the vascular tone of the lower limbs in varicose veins. Biomedicine Radioengineering. 2023. V. 26. № 5. Р. 45-58. DOI: https://doi.org/10.18127/j15604136-202305-05 (In Russian).

References
  1. Tsao C.W. et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation. 2022. V. 145. № 8. DOI: 10.1161/CIR.0000000000001052
  2. Flores N., Reyna M.A., Avitia R.L., Cardenas-Haro J.A., Garcia-Gonzalez C. Non-Invasive Systems and Methods Patents Review Based on Electrocardiogram for Diagnosis of Cardiovascular Diseases. Algorithms. 2022. V. 15. № 3. P. 82. DOI: 10.3390/a15030082
  3. Malakhov A.I., Tikhomirov A.N., Shchukin S.I., Kudashov I.A., Kobelev A.V., Maslennikov M.A. Primeneniye prekardialnoy reografii pri vyyavlenii aritmiy serdtsa. Biomeditsinskaya radioelektronika. 2013. № 10. S. 25–28. (in Russian).
  4. Tikhomirov A.N., Malakhov A.I., Shchukin S.I., Kobelev A.V., Kudashov I.A., Maslennikov M.A., Petrov V.I. Otsenka vliyaniya udelnogo elektricheskogo soprotivleniya tkani verkhnego sloya na impedansnyye prepardialnyye izmereniya. Biomeditsinskaya radioelektronika. 2013. № 10. S. 20–24. (in Russian).
  5. Malakhov A.I., Tikhomirov A.N., Shchukin S.I., Otstavnov S.S., Nikolayev A.P. Issledovaniya gemodinamiki pravogo pred-serdiya s pomoshchyu elektroimpedansnykh metodov dlya patsiyentov s fibrillyatsiyey predserdiy. Biomeditsinskaya radio-elektronika. 2015. № 7. S. 5–8. (in Russian).
  6. Tamura T., Maeda Y., Sekine M., Yoshida M. Wearable Photoplethysmographic Sensors – Past and Present. Electronics. 2014. V. 3. № 2. P. 282–302. DOI: 10.3390/electronics3020282
  7. Heijboer H., Buller H.R., Lensing A., Turpie A., Colly L.P., Ten Cate J.W. A Comparison of Real-Time Compression Ultrasonography with Impedance Plethysmography for the Diagnosis of Deep-Vein Thrombosis in Symptomatic Outpatients. N. Engl. J. Med. 1993. V. 329. № 19. P. 1365–1369. DOI: 10.1056/NEJM199311043291901
  8. Nyboer J., Kreider M.M., Hannapel L. Electrical Impedance Plethysmography: A Physical and Physiologic Approach to Peripheral Vascular Study. Circulation. 1950. V. 2. № 6. P. 811–821. DOI: 10.1161/01.CIR.2.6.811
  9. Kyle U. Bioelectrical impedance analysis? part I: review of principles and methods. Clin. Nutr. 2004. V. 23. № 5. P. 1226–1243. DOI: 10.1016/j.clnu.2004.06.004
  10. Irzmańska E., Padula G., Irzmański R. Impedance plethysmography as a tool for assessing exertion-related blood flow changes in the lower limbs in healthy subjects. Measurement. 2014. V. 47. P. 110–115.
  11. Haapala M. et al. Impedance plethysmography-based method in the assessment of subclinical atherosclerosis. Atherosclerosis. 2021. V. 319. P. 101–107.
  12. Cojocaru A.– L., Dănilă D.M. Study Concerning the Efficiency of the Reflex Massage in the Treatment of Varicose Veins. Procedia - Soc. Behav. Sci. 2014. V. 117. P. 559–565. DOI: 10.1016/j.sbspro.2014.02.262
  13. Pavek R., Rubik B. Manual Healing Methods in Alternative Medicine: Expanding Medical Horizons, a Report to the National Institutes of Health on Alternative Medical Systems and Practices in the United States. 1992.
  14. Heagerty A.M., Aalkjaer C., Bund S.J., Korsgaard N., Mulvany M.J. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension. 1993. V. 21. № 4. P. 391–397. DOI: 10.1161/01.HYP.21.4.391
  15. Haynes W.G., Ferro C.J., O’Kane K.P.J., Somerville D., Lomax C.C., Webb D.J. Systemic Endothelin Receptor Blockade Decreases Peripheral Vascular Resistance and Blood Pressure in Humans. Circulation. 1996. V. 93. № 10. P. 1860–1870. DOI: 10.1161/01.CIR.93.10.1860
  16. Antle D.M., Cormier L., Findlay M., Miller L.L., Côté J.N. Lower limb blood flow and mean arterial pressure during standing and seated work: Implications for workplace posture recommendations. Prev. Med. Rep. 2018. V. 10. P. 117–122. DOI: 10.1016/j.pmedr.2018.02.016
  17. Mookerjee A., Al-Jumaily A.M., Lowe A. Arterial pulse wave velocity measurement: different techniques, similar results--implications for medical devices. Biomech. Model. Mechanobiol. 2010. V. 9. № 6. P. 773–781. DOI: 10.1007/s10237-010-0213-y
  18. Kusche R., Klimach P., Ryschka M. A Multichannel Real-Time Bioimpedance Measurement Device for Pulse Wave Analysis. IEEE Trans. Biomed. Circuits Syst. 2018. V. 12. № 3. P. 614–622. DOI: 10.1109/TBCAS.2018.2812222
  19. Lee K., Yoo H.-J. Simultaneous Electrical Bio-Impedance Plethysmography at Different Body Parts: Continuous and Non-Invasive Monitoring of Pulse Wave Velocity. IEEE Trans. Biomed. Circuits Syst. 2021. V. 15. № 5. P. 1027–1038. DOI: 10.1109/TBCAS.2021.3115021
  20. Huynh T.H., Jafari R., Chung W.-Y. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography. IEEE Trans. Biomed. Eng. 2019. V. 66. № 4. P. 967–976. DOI: 10.1109/TBME.2018.2865751
  21. Hammoud A., Tikhomirov A.N., Shaheen Z. Automatic Bio-impedance Signal Analysis: Smoothing Processes Efficacy Evaluation in Determining the Vascular Tone Type. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), IEEE. 2021. P. 113–116.
  22. Van Gent P., Farah H., Van Nes N., Van Arem B. HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transp. Res. Part F Traffic Psychol. Behav. 2019. V. 66. P. 368–378. DOI: 10.1016/j.trf.2019.09.015
  23. Piuzzi E., Pisa S., Pittella E., Podesta L., Sangiovanni S. Low-Cost and Portable Impedance Plethysmography System for the Simultaneous Detection of Respiratory and Heart Activities. IEEE Sens. J. 2019. V. 19. № 7. P. 2735–2746. DOI: 10.1109/JSEN.2018.2887303
  24. Langer P. et al. Respiratory-Induced Hemodynamic Changes Measured by Whole-Body Multichannel Impedance Plethysmography. Physiol. Res. 2018. P. 571–581. DOI: 10.33549/physiolres.933778
  25. Hammoud A., Myasishcheva G., Shaheen Z., Tikhomirov A., Briko A., Shchukin S. Extraction of Respiratory Patterns Using Thoracic Bio-Impedance Channels. 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), IEEE. 2022. P. 74–77. DOI: 10.1109/USBEREIT56278.2022.9923339
  26. Finkelstein S.M., Cohn J.N. First- and third-order models for determining arterial compliance. J. Hypertens. 1992. V. 10. Suppl. P. S11–S14. DOI: 10.1097/00004872-199208001-00004
  27. Luzhnov P.V. Development of a Computer System for Biosynchronized Electromagnetic Impact. Ph.D. Thesis. Bauman Moscow State Technical University, Moscow, Russia. 2005.
  28. Shamkina L.A. Biotechnical System of Electromagnetic Therapy of Lower Limb Blood Circulation Disorders. Ph.D. Thesis. Bauman Moscow State Technical University, Moscow, Russia. 2009.
  29. Vlachopoulos C., Aznaouridis K., Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010. V. 55. № 13. P. 1318–1327. DOI: 10.1016/j.jacc.2009.10.061
  30. Redheuil A. et al. Reduced Ascending Aortic Strain and Distensibility: Earliest Manifestations of Vascular Aging in Humans. Hypertension. 2010. V. 55. № 2. P. 319–326. DOI: 10.1161/HYPERTENSIONAHA.109.141275
  31. Barvik D., Cerny M., Penhaker M., Noury N. Noninvasive Continuous Blood Pressure Estimation From Pulse Transit Time: A Review of the Calibration Models. IEEE Rev. Biomed. Eng. 2022. V. 15. P. 138–151. DOI: 10.1109/RBME.2021.3109643
  32. Monteiro Rodrigues L., Rocha C., Ferreira H.T., Silva H.N. Lower limb massage in humans increases local perfusion and impacts systemic hemodynamics. J. Appl. Physiol. 2020. V. 128. № 5. P. 1217–1226. DOI: 10.1152/japplphysiol.00437.2019
  33. Klabunde R. Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins. 2011.
  34. Yokoyama H., et al. Pulse Wave Velocity in Lower-Limb Arteries among Diabetic Patients with Peripheral Arterial Disease.
    J. Atheroscler. Thromb. 2003. V. 10. № 4. P. 253–258. DOI: 10.5551/jat.10.253
  35. Wiegerinck A.I.P., Thomsen A., Hisdal J., Kalvøy H., Tronstad C. Electrical impedance plethysmography versus tonometry to measure the pulse wave velocity in peripheral arteries in young healthy volunteers: a pilot study. J. Electr. Bioimpedance. 2021. V. 12. № 1. P. 169–177. DOI: 10.2478/joeb-2021-0020
  36. Kaye A.D. et al. The Effect of Deep-Tissue Massage Therapy on Blood Pressure and Heart Rate. J. Altern. Complement. Med. 2008. V. 14. № 2. P. 125–128. DOI: 10.1089/acm.2007.0665
Date of receipt: 23.08.2023
Approved after review: 21.09.2023
Accepted for publication: 02.10.2023