350 rub
Journal Biomedical Radioelectronics №4 for 2023 г.
Article in number:
Influence of thermophysical parameters of applicator antennas on the results of measuring the temperature of biological tissues by microwave radiometry
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202304-04
UDC: 612.563
Authors:

S.G. Vesnin1, M.K. Sedankin2, V.Yu. Leushin3, S.V. Agasieva4, I.O. Porokhov5, G.A. Gudkov6, M.I. Lazarenko7

1,3,5 Рeoples Friendship University of Russia (RUDN University) (Moscow, Russia)

2 Рeoples Friendship University of Russia (RUDN University), State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC – FMBC) (Moscow, Russia)

4 Technical Sciences Рeoples Friendship University of Russia (RUDN University) (Moscow, Russia)

6 Hyperion Ltd. (Moscow, Russia)

7 City clinical hospital №1 n.a. N.I. Pirogov (Moscow, Russia)

Abstract:

Problem: When measuring the temperature of biological tissues by microwave radiometry, the antenna-applicator of the microwave radiometer is in direct contact with the patient's skin. The initial temperature of the antenna is often close to the ambient temperature. During measurements, the biological tissue located near the malignant tumor is cooled by the antenna and the real temperature distribution in biological tissues is distorted which reduces the reliability of the diagnosis of pathological changes in biological tissues.

Purpose: The purpose of this work is to evaluate the influence of the design and thermophysical parameters of the applicator antenna on the results of measuring the temperatures of internal biological tissues by microwave radiometry.

Results: As a result of numerical solution of Maxwell's equations, the heat and mass transfer equations for a breast model in the form of a multilayer structure, taking into account blood flow and heat release of a malignant tumor, brightness temperatures of internal tissues and skin temperatures of the breast in the presence of a tumor and in the absence of a tumor are calculated. The influence of the antenna on the results of measuring the temperature of biological tissues was evaluated for 6 different antennas having different geometric dimensions and made of different materials. 

Practical significance: The conducted researches have shown that antennas made of materials with high thermal conductivity (22XC and PDMS) and having a large height (40 mm) have the greatest influence on the measured temperature. It is shown that for an antenna made of material 22 XC with dimensions ø30 x 40mm, the decrease in skin temperature is 3.7 - 4.1 ºС, and the decrease in radio brightness temperature is 1.9 - 2 ºС. The use of such antennas in medical practice is recommended only if there is a system for automatically heating the antenna to the temperature of the researching biological tissues. The influence of the antenna on the results of measuring the temperatures of biological tissues is much less for printed and conformal textile antennas.

Scope of the results: The obtained research results can be used in the design of a wide class of applicator antennas used in microwave radiometry.

Pages: 37-48
References
  1. Vesnin S., Turnbull A.K., Dixon J.M., Goryanin I. (2017, Oct.). Modern microwave thermometry for breast cancer. Journal of Molecular Imaging & Dynamics [Online]. 7(2). Available: https://www.longdom.org/open-access/modern-microwave-thermometry-for-breast-cancer-2155-9937-1000136.pdf
  2. Goryanin I. et al. Passive microwave radiometry in biomedical studies. Drug Discovery Today. 2020. V. 25(4). R. 757–763.
  3. Toutouzas K. et al. Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study. Atherosclerosis. 2017. V. 262. R. 25–30.
  4. Drakopoulou M. et al. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Current Opinion in Pharmacology. 2018. V. 39. R. 99–104.
  5. Ravi V.M., Sharma A.K., Arunachalam K. Pre‐clinical testing of microwave radiometer and a pilot study on the screening inflammation of knee joints. Bioelectromagnetics. 2019. V. 40. № 6. R. 402–411.
  6. Laskari K. et al. Joint microwave radiometry for inflammatory arthritis assessment. Rheumatology. 2020. V. 59(4). R. 839–844.
  7. Tarakanov A.V. et al. Passive Microwave Radiometry as a Component of Imaging Diagnostics in Juvenile Idiopathic Arthritis. Rheumato. 2022. V. 2. № 3. S. 55–68.
  8. Tarakanov A.V., Tarakanov A.A., Vesnin S., Efremov V.V., Goryanin I., & Roberts N. Microwave Radiometry (MWR) temperature measurement is related to symptom severity in patients with Low Back Pain (LBP). Journal of Bodywork and Movement Therapies. 2021. V. 26. R. 548–552.
  9. Tarakanov A.V., Tarakanov A.A., Vesnin S., Efremov V.V., Roberts N., & Goryanin I. Influence of ambient temperature on recording of skin and deep tissue temperature in region of lumbar spine. European Journal of Molecular & Clinical Medicine. 2020. V. 7(1). R. 21–26.
  10. Arunachalam K. et al. Detection of vesicoureteral reflux using microwave radiometry – system characterization with tissue phantoms. IEEE Trans. on Biomedical Engineering. 2022. V. 58. № 6. R. 1629–1636.
  11. Jacobsen S., Klemetsen Ø., Birkelund Y. Vesicoureteral reflux in young children: a study of radiometric thermometry as detection mo-dality using an ex vivo porcine model. Physics in Medicine & Biology. 2012. V. 57. № 17. R. 5557.
  12. Crandall J.P. et al. Measurement of brown adipose tissue activity using microwave radiometry and 18F-FDG PET/CT. Journal of Nuclear Medicine. 2018. V. 59. № 8. R. 1243–1248.
  13. Levshinskii V. et al. Using AI and passive medical radiometry for diagnostics (MWR) of venous diseases. Computer Methods and Programs in Biomedicine. 2022. V. 215. S. 106611.
  14. Osmonov B., Ovchinnikov L., Galazis C., Emilov B., Karaibragimov M., Seitov M., ... & Goryanin I. Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan. Diagnostics. 2021. 11(2), 259.
  15. Kaprin A.D. et al. Microwave radiometry in the diagnosis of various urological diseases. Biomedical Engineering. 2019. V. 53. № 2. R. 87–91.
  16. Ivanov Y.D. et al. Use of microwave radiometry to monitor thermal denaturation of albumin. Frontiers in physiology. 2018. V. 9. R. 1–5.
  17. Ivanov Y.D. et al. The Registration of a biomaser-like effect in an enzyme system with an RTM Sensor. Journal of Sensors. 2019. [Online].
  18. Goryanin I. et al. Monitoring Protein Denaturation of Egg White Using Passive Microwave Radiometry (MWR). Diagnostics. 2022. V. 12. № 6. S. 1498.
  19. Ivanov Y.D. et al. The Registration of a Biomaser-Like Effect in an Enzyme System with an RTM Sensor. Journal of Sensors. 2019. Available: https://www.hindawi.com/journals/js/2019/7608512/
  20. Zinovyev S.V. New medical technology-functional microwave thermography: experimental study / Presented at the 2nd International Symposium on Physics, Engineering and Technologies for Biomedicine. KnE Energy & Physics. R. 547–555.
  21. Shevelev O.A., Petrova M., Smolensky A., Osmonov B., Toimatov S., Kharybina T., ... & Goryanin I. Using medical microwave radio­metry for brain temperature measurements. Drug Discovery Today. 2021.
  22. Shevelev O.A., Petrova M.V., Saidov S.K., Gudkov A.G., Agasieva S.V., Gorlacheva E.N., & Vesnin S.G. Therapeutic Hypothermia Systems. Biomed. Eng. 2021. 54, 397–401.
  23. Cheboksarov D.V. et al. Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziologiiaireanimatologiia. 2015. V. 60. № 1. S. 66–69.
  24. Shevelev O.A. et al. Study of Brain Circadian Rhythms in Patients with Chronic Disorders of Consciousness and Healthy Individuals Using Microwave Radiometry. Diagnostics. 2022. V. 12. № 8. S. 1777.
  25. Groumpas E. et al. Real-time passive brain monitoring system using near-field microwave radiometry. IEEE Trans. on Biomedical Engineering. 2019. V. 67. № 1. R. 158–165.
  26. Kublanov V.S., Borisov V.I. Biophysical evaluation of microwave radiation for functional research of the human brain. EMBEC & NBC 2017. Springer, Singapore, 2017. S. 1045–1048.
  27. Das K., Mishra S.C. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast – A numerical study. Journal of thermal biology. 2015. V. 52. P. 147–156.
  28. Sedankin M.K. Antenny-applikatory dlya radiotermometricheskogo issledovaniya teplovyh polej vnutrennih tkanej biologicheskogo ob"ekta: avtoref. diss. kand. tekhn. nauk. M., 2013. 247 s.
  29. Sedankin M.K., Leushin V.Yu., Gudkov A.G., Vesnin S.G., Sidorov I.A., Agasieva S.V., Markin A.V. Mathematical Simulation of Heat Transfer Processes in a Breast with a Malignant Tumor. Biomedical Engineering. 2018. V. 52. Issue 3. R. 190–194. DOI: 10.1007/ s10527-018-9811-2
  30. Vesnin S.G., Sedankin M.K., Pashkova N.A. Matematicheskoe modelirovanie sobstvennogo izlucheniya golovnogo mozga cheloveka v mikrovolnovom diapazone. Biomedicinskaya radioelektronika. 2015. № 3. S. 17–32.
  31. Tepper M., Gannot I. Monitoring tumor state from thermal images in animal and human models. Medical physics. 2015. V. 42. № 3. P. 1297–1306.
  32. Ng E.Y.K., Sudharsan N.M. An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2001. V. 215. № 1. P. 25–37.
  33. Gonzalez F.J. Thermal Simulation of Breast Tumors. Revista Mexicana de Fisica. 2007. V. 53(4). R. 323–326.
  34. Wahab A.A. et al. Thermal distribution analysis of three-dimensional tumor-embedded breast models with different breast density com-positions. Medical & biological engineering & computing. 2016. V. 54. № 9. P. 1363–1373.
  35. Iudicello S. Microwave radiometry for breast cancer detection: PhD thesis. Universita’ deglistudi tor vergata Roma, dipartimento di informatica, sistemi e produzione geoinformation research doctorate. Rome. 2009. 111.
  36. Andreuccetti D., Fossi R. and Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz – 100 GHz. IFAC-CNR, Florence (Italy), 1997. [Online]. Available at: http://niremf.ifac.cnr.it/tissprop/accessed 10.07.22
  37. Gulyaev Yu.V., Leushin V.Yu., Gudkov A.G., Shchukin S.I., Vesnin S.G., Kublanov V.S., Porohov I.O., Sedankin M.K., Sidorov I.A. Pribory dlya diagnostiki patologicheskih izmenenij v organizme cheloveka metodami mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2017. № 2. V. 9. S. 27–45.
  38. Leushin V.Yu., Sidorov I.A., Novichihin E.P., CHizhikov S.V., Agasieva S.V., Alekseev O.I., Nazarov N.G., SHashurin V.D. Rezul'taty razrabotki eksperimental'nogo obrazca pribora dlya neinvazivnoj diagnostiki sostoyaniya golovnogo mozga s ispol'zovaniem metoda mnogokanal'noj mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. № 1. V. 10. S. 44–50.
  39. Sedankin M.K., Vesnin S.G., Leushin V.YU., Agasieva S.V., CHizhikov S.V. i dr. Diagnosticheskaya konformnaya sistema dlya nejrovizualizacii golovnogo mozga s ispol'zovaniem mnogokanal'nogo radiotermometra na osnove monolitnyh integral'nyh skhem. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2020. № 1. S. 43–50.
  40. Sedankin M.K., Vesnin S.G., Leushin V.YU., Dudkin D.I., Myshlecov I.I., Nazarov V.G., Agasieva S.V. Vnutripolostnaya antenna dlya mnogo­kanal'nogo radiotermografa. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2021. № 2. S. 54–62. DOI: 10.18127/j22250980-202102-05
  41. Porohov I.O., Popov V.P., Kondrat'ev A.A., Kozlov I.A., Alimirzoev R.R., Leushin V.Yu., Agasieva S.V., Antonenkova A.Yu. Shirokopolos­naya aktivnaya antenna dlya monitoringa istochnikov elektromagnitnogo izlucheniya. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022.
    V. 14. № 3. S. 14–21.
  42. Vesnin S.G., Sedankin M.K. Sravnenie antenn-applikatorov medicinskogo naznacheniya. Biomedicinskaya radioelektronika. 2012. V. 10. S. 63.
  43. Hand J. et all. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling. Physics in medicine and biology. 2001. № 46. P. 1885–1903.
Date of receipt: 14.03.2023
Approved after review: 28.03.2023
Accepted for publication: 28.06.2023