350 rub
Journal Biomedical Radioelectronics №4 for 2023 г.
Article in number:
The effect of hypobaric hypoxia on the blood plasma proteome of a healthy person uring wintering at the Antarctic Vostok Station
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202304-01
UDC: 57.042, 577.2, 571.2
Authors:

L.H. Pastushkova1, A.G. Goncharova2, D.N. Kashirina3, I.M. Larina4, E.A. Ilyin5

1–5 State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy
of Sciences (Moscow, Russia)

Abstract:

Maintaining high working capacity and health status of persons performing work and living in conditions of hypobaric hypoxia and hypodynamia is an urgent task of physiology and medicine. The study of dynamic changes in the blood proteome gives an understanding of the direction of biological processes of a healthy person's body in extreme conditions. To study the effect of hypobaric hypoxia and hypodynamia on the blood proteome of a healthy person during the annual wintering.

The proteome obtained from "dry" blood spots of 8 practically healthy men was studied by mass spectrometric method. Samples were collected during the wintering year at the Vostok station, every 2 months. Under the influence of a complex of extreme environmental factors, changes in the proteomic composition of blood occur. These changes are clearly compensated, as evidenced by the maintenance of a good state of health and the level of efficiency. The dynamics of proteome parameters in terms of regulation of antioxidant protection, erythrocyte functions as a reflection of adaptation to hypoxia, immunity, elimination of DNA damage by ROS, changes in the activity of angiogenesis, production and transport of sex steroids were noted.

Understanding the direction of biological processes that ensure the adaptation of a healthy organism to a complex of extreme factors is important for the formation of a strategy for medical control and proposals for measures and means of preventing changes in health status.

Pages: 5-14
For citation

Pastushkova L.H., Goncharova A.G., Kashirina D.N., Larina I.M., Ilyin E.A. The effect of hypobaric hypoxia on the blood plasma proteome of a healthy person during wintering at the Antarctic Vostok Station. Biomedicine Radioengineering. 2023. V. 26. № 4. P. 5–14. DOI: https:// doi.org/10.18127/j15604136-202302-01 (In Russian)

References
  1. Strewe C, Moser D, Buchheim JI, Gunga HC, Stahn A, Crucian BE, Fiedel B, Bauer H, Gössmann-Lang P, Thieme D, Kohlberg E, Choukèr A, Feuerecker M. Sex differences in stress and immune responses during confinement in Antarctica. Biol Sex Differ. 2019 Apr 16;10(1):20. doi: 10.1186/s13293-019-0231-0
  2. Johnsen BH, Brattebø G, Phillips TM, Gjeldnes R, Bartone PT, Monsen HN, Thayer JF. Crossing the Antarctica: Exploring the Effects of Appetite-Regulating Hormones and Indicators of Nutrition Status during a 93-Day Solo-Expedition. Nutrients. 2021 May 23;13(6):1777. doi: 10.3390/nu13061777
  3. Arendt J. Biological rhythms during residence in polar regions. Chronobiol Int. 2012 May;29(4):379-94. doi: 10.3109/07420528. 2012.668997
  4. Larina I.M., Goncharova A.G., Pastushkova L.H., Kashirina D.N., CHebotok A.N., Kononihin A.S., Brzhovskij A.G., Il'in E.A. Osobennosti proteomnoj regulyacii energeticheskogo obmena vo vremya godichnoj zimovki na antarkticheskoj stancii «Vostok». Biomedicinskaya radioelektronika. 2022. T. 12. № 5. S. 5–9. doi:10.18127/j15604136-202201-01
  5. Suedfeld P, Weiss K. Antarctica natural laboratory and space analogue for psychological research. Environ Behav. 2000 Jan;32(1):7-17. doi: 10.1177/00139160021972405
  6. Pagel JI, Choukèr A. Effects of isolation and confinement on humans-implications for manned space explorations. J Appl Physiol (1985). 2016 Jun 15;120(12):1449-57. doi: 10.1152/japplphysiol.00928.2015
  7. Min M, Song T, Sun M, Wang T, Tan J, Zhang J. Dhh signaling pathway regulates reconstruction of seminiferous tubule-like structure. Reprod Biol. 2022 Dec;22(4):100684. doi: 10.1016/j.repbio.2022.100684. Epub 2022 Aug 17. PMID: 35987158.
  8. Wang G, Zhang Z, Xu Z, Yin H, Bai L, Ma Z, Decoster MA, Qian G, Wu G. Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. Biochim Biophys Acta. 2010 Dec;1803(12):1359-67. doi: 10.1016/j.bbamcr.2010.09.002. Epub 2010 Sep 15. PMID: 20840857; PMCID: PMC2956789.
  9. Samaja M. Blood gas transport at high altitude. Respiration. 1997;64(6):422-8. doi: 10.1159/000196718
  10. Caputo V, Pacilli MG, Arisi I, Mazza T, Brandi R, Traversa A, Casasanta G, Pisa E, Sonnessa M, Healey B, Moggio L, D'Onofrio M, Alleva E,
  11. Macrì S. Genomic and physiological resilience in extreme environments are associated with a secure attachment style. Transl Psychiatry. 2020 Jun 9;10(1):185. doi: 10.1038/s41398-020-00869-4
  12. Arendt J, Middleton B. Human seasonal and circadian studies in Antarctica (Halley, 75°S). Gen Comp Endocrinol. 2018 Mar 1;258:250-258. doi: 10.1016/j.ygcen.2017.05.010
  13. Steinach M, Kohlberg E, Maggioni MA, Mendt S, Opatz O, Stahn A, Tiedemann J, Gunga HC. Changes of 25-OH-Vitamin D during Overwintering at the German Antarctic Stations Neumayer II and III. PLoS One. 2015 Dec 7;10(12):e0144130. doi: 10.1371/ journal.pone.0144130
  14. Mairesse O, MacDonald-Nethercott E, Neu D, Tellez HF, Dessy E, Neyt X, Meeusen R, Pattyn N. Preparing for Mars: human sleep and performance during a 13 month stay in Antarctica. Sleep. 2019 Jan 1;42(1). doi: 10.1093/sleep/zsy206
  15. Palinkas LA, Glogower F, Dembert M, Hansen K, Smullen R. Incidence of psychiatric disorders after extended residence in Antarctica. Int J Circumpolar Health. 2004 May;63(2):157–68. doi: 10.3402/ijch.v63i2.17702
  16. Palinkas LA, Reedy KR, Shepanek M, Reeves D, Samuel Case H, Van Do N, Lester Reed H. A randomized placebo-controlled clinical trial of the effectiveness of thyroxine and triiodothyronine and short-term exposure to bright light in prevention of decrements in cognitive performance and mood during prolonged Antarctic residence. Clin Endocrinol (Oxf). 2010 Apr;72(4):543-50. doi: 10.1111/j.1365-2265.2009.03669
  17. Strewe C, Thieme D, Dangoisse C, Fiedel B, van den Berg F, Bauer H, Salam AP, Gössmann-Lang P, Campolongo P, Moser D, Quintens R, Moreels M, Baatout S, Kohlberg E, Schelling G, Choukèr A, Feuerecker M. Modulations of Neuroendocrine Stress Responses During Confinement in Antarctica and the Role of Hypobaric Hypoxia. Front Physiol. 2018 Nov 26;9:1647. doi: 10.3389/fphys.2018.01647
  18. Yadav AP, Mishra KP, Ganju L, Singh SB. Wintering in Antarctica: impact on immune response of Indian expeditioners. Neuroimmuno­modulation. 2012;19(6):327–33. doi: 10.1159/000339512
  19. Feuerecker M, Crucian B, Salam AP, Rybka A, Kaufmann I, Moreels M, Quintens R, Schelling G, Thiel M, Baatout S, Sams C, Choukèr A. Early adaption to the antarctic environment at dome C: consequences on stress-sensitive innate immune functions. High Alt Med Biol. 2014 Sep;15(3):341-8. doi: 10.1089/ham.2013.1128
  20. Feuerecker M, Crucian BE, Quintens R, Buchheim JI, Salam AP, Rybka A, Moreels M, Strewe C, Stowe R, Mehta S, Schelling G, Thiel M, Baatout S, Sams C, Choukèr A. Immune sensitization during 1 year in the Antarctic high-altitude Concordia Environment. Allergy. 2019 Jan;74(1):64–77. doi: 10.1111/all.13545
  21. Abramić M, Vitale L. Basic amino acids preferring broad specificity aminopeptidase from human erythrocytes. Biol Chem Hoppe Seyler. 1992 Jul;373(7):375-80. doi: 10.1515/bchm3.1992.373.2.375. PMID: 1515063.
  22. Hattersley J, Wilson AJ, Thake CD, Facer-Childs J, Stoten O, Imray C. Metabolic rate and substrate utilisation resilience in men undertaking polar expeditionary travel. PLoS One. 2019 Aug 15;14(8):e0221176. doi: 10.1371/journal.pone.0221176
  23. Porcelli S, Marzorati M, Healey B, Terraneo L, Vezzoli A, Bella SD, Dicasillati R, Samaja M. Lack of acclimatization to chronic hypoxia in humans in the Antarctica. Sci Rep. 2017 Dec 22;7(1):18090. doi: 10.1038/s41598-017-18212-1
  24. Yadav AP, Mishra KP, Ganju L, Singh SB. Wintering in Antarctica: impact on immune response of Indian expeditioners. Neuroimmunomodulation. 2012;19(6):327-33. doi: 10.1159/000339512
  25. Guansong Wang, Zhiyuan Zhang, Zhi Xu, Hongjin Yin, Li Bai, Zhuang Ma, Mark A. De Coster, Guisheng Qian, Guangyu Wu. Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research Volume 1803, Issue 12, December 2010, Pages 1359-1367.
  26. Ming Min, Tao Song, Mengdi Sun, Tingting Wang, Jun Tan ,Jidong Zhang. Dhh signaling pathway regulates reconstruction of seminiferous tubule-like structure. Reproductive Biology. Volume 22, Issue 4, December 2022, 100684 doi.org/10.1016/j.repbio.2022.100684
  27. Bondarenko N.B., Batyushin M.M., Gasanov M.Z., Sarvilina I.V., Golubeva O.V. Ubikvitin-nezavisimaya vnutrikletochnaya degradaciya belka u pacientov s hronicheskoj bolezn'yu pochek 5D stadii. Nefrologiya 2019; 23 (1): 73–78.
  28. Hsu CH, Liou JY, Dutschman GE, Cheng YC. Mol Pharmacol. 2005 Mar;67(3):806-14. doi: 10.1124/mol.104.006098
Date of receipt: 14.04.2023
Approved after review: 27.04.2023
Accepted for publication: 28.06.2023