350 rub
Journal Biomedical Radioelectronics №1 for 2023 г.
Article in number:
Application of microwave radiometry in neurology
Type of article: overview article
DOI: https://doi.org/10.18127/j15604136-202301-07
UDC: 615.471
Authors:

M.K. Sedankin1, S.G. Vesnin2, A.G. Gudkov3, K.V. Zhuravleva4, V.Yu. Leushin5, I.A. Sidorov6, S.V. Chizhikov7, V.E. Pchelintsev8

1–3, 5–8 Bauman Moscow State Technical University (Moscow, Russia)

1 State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (Moscow, Russia)

4 Moscow Power Engineering Institute (Moscow, Russia)

Abstract:

Today, stroke of the brain is becoming the main problem of neurology. The international project for the Study of diseases "Global Burden Diseases" conducted an analysis of morbidity and mortality from stroke from 1990 to 2019 in 204 countries of the world, including Russia. According to researchers, more than 101 million cases of stroke were registered during this period, and in 2019 the number of cases amounted to 12.2 million, of which 6.55 million cases resulted in death. mortality increased by 43%. According to statistics, an extremely alarming situation has recently developed in Russia almost 500 thousand strokes occur per year, and the mortality rate is 25%.

Currently, in medical practice, special attention is paid to studies of the brain by microwave radiometry, since they are relevant for monitoring the dynamics of functional disorders, as well as the diagnosis and therapy of cerebral circulation, strokes, tumors and various traumatic brain injuries. The purpose of the article is to highlight the issues of the use of microwave radiometry for early diagnosis in neurology and to choose the direction of further research.

The article discusses the application and potential of microwave radiometry in neurology and identifies areas for further research. For early diagnosis in neurology, it is necessary to use multi-channel multi-frequency radiothermographs, which allow visualizing temperature distributions in brain tissues quickly, efficiently, cost-effectively in a simple and intuitive user interface.

The conducted analytical review of the study confirms the effectiveness of the use of microwave radiometry in neurology, further research is necessary to improve the examination process and expand the diagnostic range of the method. It is potentially possible to create a multi-channel and/or multi-frequency radiothermograph (thermoencephalograph) for use in the healthcare system for the diagnosis of brain pathology.

Pages: 60-72
For citation

Sedankin M.K., Vesnin S.G., Gudkov A.G., Zhuravleva K.V., Leushin V.Yu., Sidorov I.A., Chizhikov S.V., Pchelintsev V.E. Application of microwave radiometry in neurology. Biomedicine Radioengineering. 2023. V. 26. № 1. Р. 60-72. DOI: https://doi.org/10.18127/ j15604136-202301-07 (In Russian).

References
  1. Feigin V.L. et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology. 2021. V. 20. № 10. P. 795–820.
  2. Piradov M.A., Maksimova M.Yu., Tanashyan M.M. Insult. poshagovaya instruktsiya. 2-e izd., pererab. i dop. M.: Izdatelskaya gruppa «GEOTAR-Media». 2020. 288 s.
  3. Starodubtseva O.S., Begicheva S.V. Analiz zabolevayemosti insultom s ispolzovaniyem informatsionnykh tekhnologiy. Meditsinskiye nauki. Fundamentalnyye issledovaniya. 2012. № 8. S. 424–427. (in Russian).
  4. Vesnin S.G., Sedankin M.K., Pashkova N.A. Matematicheskoye modelirovaniye sobstvennogo izlucheniya golovnogo mozga cheloveka v mikrovolnovom diapazone. Biomeditsinskaya radioelektronika. 2015. №. 3. S. 17–32. (in Russian).
  5. Siores Е. et al. First in vivo application of microwave radiometry in human carotids. Journal of the American College of Cardiology. 2012. V. 59. № 18. P. 1645–1653.
  6. Toutouzas K. et al. Morphological and functional assessment of carotid plaques have similar predictive accuracy for coronary artery disease. Stroke. 2013. V. 44. P. 2607–2609.
  7. Shevelev O.A., Saidov Sh.Kh., Smolenskiy A.V. Narusheniya teplovogo balansa golovnogo mozga pri fizicheskikh nagruzkakh i sportivnykh cherepno-mozgovykh travmakh. Ekologo-fiziologicheskiye problemy adaptatsii. 2019. S. 248–249. (in Russian).
  8. Saidov Sh.Kh. i dr. Neyroprotektivnyye effekty selektivnoy kraniotserebralnoy gipotermii. Zhizneobespecheniye pri kriticheskikh sostoyaniyakh. 2019. S. 98–99. (in Russian).
  9. Shevelev O. et al. Using medical microwave radiometry for brain temperature measurements. Drug Discovery Today. 2021.V. 3. P. 881–889.
  10. Gudkov A.G. et al. Studies of a microwave radiometer based on integrated circuits. Biomedical Engineering. 2020. V. 53. № 6. P. 413–416.
  11. Gudkov A.G. et al. Use of multichannel microwave radiometry for functional diagnostics of the brain. Biomedical Engineering. 2019. V. 53. № 2. P. 108–111.
  12. Leushin V.Yu. et al. Possibilities of increasing the interference immunity of radiothermograph applicator antennas for brain diagnostics. Sensors and Actuators A: Physical. 2022. V. 337. P. 113439.
  13. Sugiura T. et al. Five-band microwave radiometer system for non-invasive measurement of brain temperature in new-born infants: system calibration and its feasibility. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 01-05 sept. 2004, San Francisco, CA, USA. V. 1. P. 2292–2295.
  14. Kouno Y. et al. Development state of multifrequency microwave radiometer system for noninvasive measurement of infant's deep brain temperatures. 2004 Asia-Pacific Radio Science Conference. Proceedings. IEEE, 24-27 Aug. 2004. Qingdao, China P. 438–441.
  15. Sedankin M. et al. Development of a miniature microwave radiothermograph for monitoring the internal brain temperature. Eastern-European Journal of Enterprise Technologies. 2018. V. 3 (5). P. 26–36.
  16. Stauffer P.R. et al. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case. The neuroradiology journal. 2014. V. 27. № 1. P. 3–12.
  17. Rodrigues D.B. et al. Microwave radiometry for noninvasive monitoring of brain temperature. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. 2018. P. 87–127.
  18. Myakotnykh V.S., Vlasov A.L. Sverkhchastotnaya radiotermometriya v prognozirovanii tserebralnykh rasstroystv pozhilykh bolnykh. Aktualnyye problemy gerontologii. 1999. S. 108–112. (in Russian).
  19. Myakotnykh V.S., Vlasov A.L. Sverkhvysokochastotnaya radiotermografiya v prognozirovanii tserebralnykh sosudistykh rasstroystv. Aktualnyye problemy gerontologii i geriatrii. Sbornik statey i tezisov nauchno-prakticheskoy konferentsii. N.-Novgorod. 1999. S. 117–118. (in Russian).
  20. Azin A.L., Vlasov A.P., Myakotnykh V.S. Radiotermograficheskoye izucheniye smerti mozga i tserebralnoy ishemii. Ishemiya mozga: Mezhdunar. simpozium. SPb. 1997. S. 214. (in Russian).
  21. Vlasov A.L. Dinamicheskaya sverkhvysokochastotnaya radiotermografiya golovnogo mozga v norme i pri ishemicheskikh sostoyaniyakh: Avtoref. diss. kand.med.nauk. Perm. 2000. 27 s. (in Russian).
  22. Azin A.L., Kublanov V.S. Metod glubinnoy SVCh-radiotermografii dlya izucheniya patogeneza golovnoy boli. Sb. trudov «Meditsinskoye obsluzhivaniye veteranov voyn». Ekaterinburg: UIF «Nauka». 1995. S. 27–36. (in Russian).
  23. Mikrovolnovaya termometriya kak dopolnitelnyy diagnosticheskiy instrumentalnyy kriteriy perikranialnykh i sheynykh myshechno-sustavnykh narusheniy pri sindrome khronicheskoy golovnoy boli: Metodicheskiye rekomendatsii. M.: Ministerstvo Zdravookhraneniya RF. Gosudarstvennyy nauchnyy tsentr lazernoy meditsiny. 2003. [Eletronnyy resurs] http://www.resltd.ru/rus/literature/ med_recom/med_recom.htm – 19.11.2022. (in Russian).
  24. Kolesov S.N. Polidiapazonnaya passivnaya lokatsiya teplovogo izlucheniya cheloveka v diagnostike porazheniy tsentralnoy i perifericheskoy nervnoy sistemy. Ros. AMN NII. neyrokhirurgii im. N.N. Burdenko: Avtoref. diss. dokt. med. nauk. M. 1993. 49 s. (in Russian).
  25. Sedankin M.K. Antenny-applikatory dlya radiotermometricheskogo issledovaniya teplovykh poley vnutrennikh tkaney biologicheskogo obyekta: Dis. kand. tekhn. nauk. M. 2013. 247 s. (in Russian).
  26. Anzimirov V.L. i dr. Sovremennyye vozmozhnosti i perspektivy neyroteplovideniya. Biomeditsinskaya radioelektronika. 2010. № 3. S. 49–54. (in Russian).
  27. Sedankin M.K. et al. System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer. 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE. 2020. P. 154–159.
  28. Sedankin M. et al. Development and optimization of an ultra wideband miniature medical antenna for radiometric multi-channel multi-frequency thermal monitoring. EUREKA: Physics and Engineering. 2020. V. 6. P. 71–81.
  29. Andreuccetti D., Fossi R., Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy), 1997. Based on data published by C. Gabriel et al. in 1996. [Online]. http://niremf.ifac.cnr.it/tissprop/-10.07.2022
  30. Drossos A., Santomaa V., Kuster N. The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz. IEEE transactions on microwave theory and techniques. 2000. V. 48. № 11. P. 1988–1995.
  31. Streeter R. et al. Correlation radiometry for subcutaneous temperature measurements. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2021. V. 6. № 2. P. 230–237.
  32. Shimosegawa E. et al. Metabolic penumbra of acute brain infarction: a correlation with infarct growth. Ann. Neurol. 2005. V. 57. P. 495–504.
  33. Schmid G., Neubauer G., Mazal P.R. Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association. 2003. V. 24. № 6. P. 423–430.
  34. Velan B. et al. Design of microwave wideband antenna for brain tumor imaging applications. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). IEEE. 2021. P. 906–910.
  35. Raihan R. et al. A wearable microstrip patch antenna for detecting brain cancer. 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP) IEEE. 2017. P. 432–436.
  36. Saleeb D.A. et al. A technique for the early detection of brain cancer using circularly polarized reconfigurable antenna array. IEEE Access. 2021. V. 9. P. 133786–133794.
  37. Mohammed B.J., Abbosh A.M., Ireland D. Stroke detection based on variations in reflection coefficients of wideband antennas. Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. 2012. P. 1–2.
  38. Fedeli A. et al. Nonlinear S-parameters inversion for stroke imaging. IEEE Transactions on Microwave Theory and Techniques. 2020. V. 69. № 3. P. 1760–1771.
  39. Ireland D., Bialkowski M. Microwave head imaging for stroke detection. Progress In Electromagnetics Research. 2011. V. 21. P. 163–175.
  40. Sedankin M.K. Diagnosticheskaya konformnaya sistema dlya neyrovizualizatsii golovnogo mozga s ispolzovaniyem mnogokanalnogo radiotermometra na osnove monolitnykh integralnykh skhem. Nanotekhnologii: razrabotka. primeneniye. 2020. T. 12. № 1. S. 5–12. (in Russian).
  41. Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors and Actuators A: Physical. 2021. V. 318. P. 112506.
Date of receipt: 30.09.2022
Approved after review: 08.11.2022
Accepted for publication: 20.01.2023