350 rub
Journal Biomedical Radioelectronics №1 for 2023 г.
Article in number:
Review of ways of reading EMG signals in the forearm area for controlling of bionic upper limb prostheses
Type of article: overview article
DOI: https://doi.org/10.18127/j15604136-202301-04
UDC: 615.477.21
Authors:

V.F. Bez’’yazychnyi1, E.A. Yeliseichev2, P.S. Vorobyev3, V.V. Mikhailov4, A.A. Tyaptin5

1,3 Rybinsk State Aviation Technical University (Rybinsk, Russia)

2,4 JSC «Rybinsk Instrument Making Plant» (Rybinsk, Russia)

5 «MIFRM», Ltd (Medical Center «Motus») (Yaroslavl, Russia)

Abstract:

Electromyography is one of the main ways to monitor human muscular activity. Recorded EMG signals can be used to control rehabilitation and diagnostic tools in healthcare and to diagnose human neuromuscular system disabilities. Recently, there is huge developing in usage of EMG signals for human-machine interaction. For example, controlling of bionic prosthesis. The aim of this article is to review existing ways of reading EMG signals for control of bionic prosthesis. To find the information authors used three online resources: elibrary, ResearchGate and Google Scholar. Keywords employed in research inclided «bionic prosthesis», «EMG system», «EMG sensor», «muscle activity», «surface electrodes», «invasive electrodes». A total of 30 papers were selected for full-text assessment. All existing methods of reading EMG signals were divided into two groups: invasive and noninvasive. In this article authors described four invasive methods, such as: regeneretative sensors, extraneural sensors, intraneural sensors and targeted muscle reinnervation and four noninvasive methods: «wet» contact sensors, dry contact sensors, dry noncontact sensors and textile sensors. The application of invasive methods is considered to be quite dangerous for human health and can lead to degeneration of human nerve tissues. However, targeted muscle reinnervation has found its place in prosthetics. The possibility of applying regenerative, extraneural and intraneural sensors in practice requires further research. Noninvasive methods are less dangerous. But they do not allow to determine the location of the EMG signal with the same accuracy. The most popular sensors in prosthetics are dry contact sensors. They do not require usage of special conductive gel, unlike «wet» contact sensors. But dry contact sensors require further research to determine the optimal design of these sensors, namely the distance between the electrodes and size of electrodes. Noncontact and textile sensors can be perspective ways to read EMG signal, their disadvantage is that the quality of the signal recorded with these sensors is significantly lower than that of contact sensors. However, textile electrodes are actively being used in sport fields. Thus, currently dry contact electrodes are the best way to record EMG signal. In the future authors are planning to continue work on determining the optimal design of dry contact sensors.

Pages: 35-44
For citation

Bez’’yazychnyi V.F., Yeliseichev E.A., Vorobyev P.S., Mikhailov V.V., Tyaptin A.A. Review of ways of reading EMG signals in the forearm area for controlling of bionic upper limb prostheses. Biomedicine Radioengineering. 2023. V. 26. № 1. Р. 35-44. DOI: https://doi.org/10.18127/j15604136-202301-04 (In Russian).

References
  1. Sanadze A.G., Kasatkina L.F. Klinicheskaya elektromiografiya dlya prakticheskikh nevrologov. M.: GEOTAR-Media. 2007. 64 s. (in Russian).
  2. Lukianov M.V. Klinicheskaya elektromiografiya. Istoriya i perspektivy. Nevrologicheskiy zhurnal. 2013. № 2 (T. 18). S. 59–64. (in Russian).
  3. Koykov V.V. Nadlezhashchaya praktika podgotovki nauchnoy publikatsii. Chast 2. Obzornaya statia. Journal of health development. 2018. № 2 (27). S. 46–55. (in Russian).
  4. Rijnbeek E.H., Eleveld N., Olthuis W. Update on Peripheral Nerve Electrodes for Closed-Loop Neuroprosthetics. Frontiers in neuroscience. 2018. V. 12. № 350. 9 p. DOI:10.3389/fnins.2018.00350
  5. Clements I.P., Mukhatyar V.J., Srinivasan A., Bentley J.T., Andreasen D.S., Bellamkonda R.V. Regenerative scaffold electrodes for peripheral nerve interfacing. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society. 2013. V. 21. № 4. P. 554–566. DOI:10.1109/TNSRE.2012.2217352
  6. Guzman G., Rafaqut M., Park S., Choi P.Y. Regenerative Neural Electrodes. Neural Interface Engineering. 2020. P. 281–298. DOI:10.1007/978‑3‑030‑41854‑0_11
  7. Delgado-Martínez I., Righi M., Santos D., Cutrone A., Bossi S., D'Amico S., Del Valle J., Micera S., Navarro X. Fascicular nerve stimulation and recording using of novel double-aisle regenerative electrodes. Journal of neural engineering. 2017. V. 14. № 4. P. 046003. DOI:10.1088/1741-2552/aa6bac
  8. Shcherbina K.K., Golovin M.A., Vladimirova O.A. Obzor metodov lokalnogo predotvrashcheniya zatukhaniya elektricheskikh signalov pri registratsii elektricheskoy aktivnosti nervov perifericheskoy nervnoy sistemy. Fizicheskaya i reabilitatsionnaya meditsina. 2021. T. 3. № 1. S. 67–71. DOI:10.26211/2658-4522-2021-3-1-61-71 (in Russian).
  9. Safin D.R., Pilshchikov I.S., Urakseyev M.A., Migranova R.M. Primeneniye implantiruyemykh mikroelektrodov v sistemakh upravleniya protezami. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. 2010. T. 14. №2 (37). S. 104–109. (in Russian).
  10. Gorokhova N.M., Golovin M.A., Chezhin M.S. Metody upravleniya protezami verkhnikh konechnostey. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy. mekhaniki i optiki. 2019. T. 19. № 2. S. 314–325. (in Russian).
  11. Ruvalcaba J.A., Gutiérrez M.I., Vera A., Leija L. Wearable Active Electrode for sEMG Monitoring Using Two-Channel Brass Dry Electrodes with Reduced Electronics. Journal of healthcare engineering. 2020. V. 2020. № 5950218. 11 p. DOI:10.1155/2020/5950218
  12. Rodrigues M., Fiedler P., Küchler N., P Domingues R., Lopes C., Borges J., Haueisen J., Vaz F. Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films. Materials (Basel). 2020. V. 2135. № 9 (13). 16 p. DOI:10.3390/ma13092135
  13. Poltoranina O.A., Lezhina I.A., Uvarov A.A. Emkostnyye datchiki dlya beskontaktnoy registratsii elektrokardiogrammy. Molodezh i sovremennyye informatsionnyye tekhnologii: Sbornik trudov XIII Mezhdunar. nauchno-praktich. konferentsii studentov. aspirantov i molodykh uchenykh: v 2-kh t. 2016. T. 2. S. 174–175. (in Russian).
  14. Bekmachev A. Datchiki Epic ot Plessey Semiconductors – proryv v sensornykh tekhnologiyakh. Komponenty i tekhnologii. 2013. № 1 (138). S. 21–24. (in Russian).
  15. Zhang H., Tian L., Zhang L., Li G. Using textile electrode EMG for prosthetic movement identification in transradial amputees. 2013 IEEE International Conference on Body Sensor Networks. 2013. P. 1–5. DOI:10.1109/BSN.2013.6575510
  16. Lam E., Alizadeh-Meghrazi M., Schlums A., Eskandarian L., Mahnam A., Moineau B., Popovic M.R. Exploring textile-based electrode materials for electromyography smart garments. Journal of rehabilitation and assistive technologies engineering. 2022. 17 p. DOI:10.1177/20556683211061995
  17. Fonseca P., Borgonovo-Santos M., Catarino A., Correia M., Vilas-Boas J.P. Characterization of textile electrodes for EMG measurements: impedance and signal morphology. Corpoconsciência. 2021. V. 25. № 2. P. 221–235. DOI:10.51283/rc.v25i2.12697
  18. O’Brien S., Searle T., Alici G. Flexible Surface Electrodes Targeting Biopotential Signals from Forearm Muscles for Control of Prosthetic Hands: Part 1 – Characterisation of sEMG Electrodes. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2019. P. 1019–1024. DOI:10.1109/AIM.2019.8868600
  19. Jiang Y., Togane M., Lu B., Yokoi H. sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand. Frontiers in neuroscience. V. 11. № 33. 12 p. DOI:10.3389/fnins.2017.00033
  20. Zhu Z., Liu T., Li G., Li T., Inoue Y. Wearable sensor systems for infants. Sensors (Basel). 2015. № 2 (15). P. 3721–3749. DOI:10.3390/s150203721
  21. Liu S., Liu X., Jiang Y., Wang X., Huang P., Wang H., Zhu M., Tan J., Li P., Lin C., Zhang G., Chen S., Li G. Flexible Non-contact Electrodes for Bioelectrical Signal Monitoring. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2018. P. 4305–4308. DOI:10.1109/EMBC.2018.8513306
  22. Chi Y.M., Jung T.P., Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE reviews in biomedical engineering. 2010. V. 3. P. 106–119. DOI:10.1109/RBME.2010.2084078
  23. Kralikova I., Babusiak B., Labuda M. Textile Electrodes for Bioelectrical Signal Measurement. 2022 ELEKTRO (ELEKTRO). 2022. P. 1–5. DOI: 10.1109/ELEKTRO53996.2022.9803363
  24. Prakash A., Sharma S., Sharma N. A compact-sized surface EMG sensor for myoelectric hand prosthesis. Biomedical Engineering Letters. 2019. № 9. P. 467–479. DOI:10.1007/s13534-019-00130-y
  25. Yuk S.W., Hwang I.H., Cho H.R., Park S.G. A Study on An EMG Sensor with High Gain and Low Noise for Measuring Human Muscular Movement Patterns for Smart Healthcare. Micromachines. 2018. V. 9. № 11. 555 p. DOI:10.3390/mi9110555
  26. Wu Y.D., Ruan S.J., Lee Y.H. An Ultra-Low Power Surface EMG Sensor for Wearable Biometric and Medical Applications. Biosensors. 2021. V. 11. P. 411. DOI:10.3390/bios11110411
  27. Saal H., Bensmaia S. Biometric approaches to bionic touch through a peripheral nerve interface. Neuropsychologia. 2015. V. 79. Pt. B. P. 344–353. DOI:10.1016/j.neuropsychologia.2015.06.010
  28. Arruda L.M., Calado A., Boldt R., Yu Y., Carvlho H., Carvalho M., Ferreira F., Soares F., Matos D. Design and Testing of a Textile EMG Sensor for Prosthetic Control. IoT Technologies for HealthCare. 2020. V. 314. P. 37–51. DOI:10.1007/978-3-030-42029-1_3
  29. Bawa A., Banitas K. Design Validation of a Low-Cost EMG Sensor Compared to a Commercial-Based System for Measuring Muscle Activity and Fatigue. Sensors. 2022. № 15 (22): P. 5799. DOI:10.3390/s22155799
  30. Liu S., Zhu M., Liu X., Samuel O., Wang X., Huang Z., Wu. W. Flexible noncontact electrodes for comfortable monitoring of physiological signals. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 2018. V. 2018. P. 4305–4308. DOI:10.1109/EMBC.2018.8513306
  31. Guzman G., Rafaqut M., Park S., Choi, P.Y. Regenerative Neural Electrode. Neural Interface Engineering. 2020. P. 281–298. DOI:10.1007/978‑3‑030‑41854‑0_11
  32. Song M.S., Kang S.G., Lee K.T., Kim J. Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application. Micromachines. 2019. V. 10. № 12. P. 879. DOI:0.3390/mi10120879
  33. Zyryanov D.A. Ispolzovaniye razlichnykh datchikov i sensorov v protezirovanii. Innovatsionnyye idei molodykh issledovateley: Sbornik nauchnykh statey po materialam VI Mezhdunar. nauchno-praktich. konferentsii. Ufa. 2021. S. 243–249. (in Russian).
  34. Safin D.R., Pilshchikov I.S., Gusev V.G., Urakseyev M.A. Otsenka effektivnosti razlichnykh konstruktsiy elektrodov i usiliteley biosignalov v sistemakh upravleniya protezami. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskiye nauki. 2009. № 2 (10). S. 88–101. (in Russian).
  35. Merlo A., Bò M.C., Campanini I. Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. Sensors. 2021. V. 21. P. 7322. DOI:10.3390/s21217322
  36. Gurzhin S.G., Zhulev V.I., Kaplan M.B., Kryakov V.G., Proshin E.M., Shulyakov A.V. Virtualnyye sredstva operativnoy registratsii. obrabotki i predstavleniya biomeditsinskikh signalov v komplekse «Multimag». Biomeditsinskaya radioelektronika. 2018. № 8. S. 11–18. DOI:10.18127/j15604136-201808-03 (in Russian).
  37. Briko A.N., Chvanova Yu.A., Kobelev A.V., Shchukin S.I. Otsenka vliyaniya sily prizhatiya elektrodnoy sistemy na signaly neyromyshechnoy aktivnosti. Biomeditsinskaya radioelektronika. 2018. № 6. S. 32–35. (in Russian).
  38. Petrunin Yu.Yu. Biomeditsinskoye oborudovaniye v sisteme umnogo doma i interneta veshchey. Biomeditsinskaya radioelektronika. 2018. № 13. S. 60–62. DOI:10.18127/j15604136-201812-08 (in Russian).
  39. Babanov N.D., Kubryak O.V. Sistemnaya otsenka sostoyaniya konechnosti u cheloveka po dannym elektromiogrammy. Biomeditsinskaya radioelektronika. 2018. № 11. S. 26-28. DOI:10.18127/j15604136-201811-04 (in Russian).
Date of receipt: 03.11.2022
Approved after review: 08.11.2022
Accepted for publication: 20.01.2023