350 rub
Journal Biomedical Radioelectronics №1 for 2023 г.
Article in number:
The use of combinatorial methods and time series analysis to predict the dynamics of diseases based on data from clinical analyzes
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202301-02
UDC: 519.1
Authors:

V.V. Zayats1, V.V. Danshin2, R.V. Kolesnikov3

1,3 Universal design and assistive technology resource center,
Ministry of Industry and Trade of the Russian Federation (Moscow, Russia)

2 National Research Nuclear University MEPHI of Moscow Engineering Physics Institute (Moscow, Russia)

Abstract:

The direction of accurate diagnostics based on the analysis of medical data, predicting the dynamics of patients' diseases on the basis of laboratory tests is an urgent task of clinical medicine. Various deterministic and probabilistic methods and algorithms are used in this process. Among the probabilistic approaches, tools based on artificial intelligence (AI) technologies, as well as combinatorial methods, occupy an important place. Medical AI tools have advantages such as speed of processing "big" data and speed of obtaining results, but they also have disadvantages, which include weak interpretability of results and system error up to 10%. An alternative approach devoid of these disadvantages could be the combined use of time-series prediction and combinatorics methods for disease diagnosis based on patient analyses. Therefore, the issue of substantiating the primary technical requirements for the service of collecting and processing data on the dynamics of patient diseases is important.

The purpose of this work is to substantiate the primary minimum technical requirements for a set of tools for disease prediction based on time series analysis and the use of classical and modern combinatorial methods. The formed set of requirements can be used for the development and approval of the terms of reference for R&D on the topic of development, creation and implementation of a promising domestic complex for predicting the course of individual diseases on the basis of blood tests, computer and magnetic resonance imaging.

Pages: 18-26
For citation

Zayats V.V., Danshin V.V., Kolesnikov R.V. The use of combinatorial methods and time series analysis to predict the dynamics of diseases based on data from clinical analyzes. Biomedicine Radioengineering. 2023. V. 26. № 1. Р. 18-26. DOI: https://doi.org/10.18127/ j15604136-202301-02 (In Russian).

References
  1. Littl R.Dzh.A., Rubin D.B. Statisticheskiy analiz dannykh s propuskami. M.: Bukinist. 1991. 336 s. (in Russian).
  2. Care Mentor AI ofitsialnyy sayt - URL: https://carementor.ru/research (data obrashcheniya 23.06.2022). (in Russian).
  3. Tretye mneniye vyskazhet iskusstvennyy intellekt - URL: https://clck.ru/QEUFG (data obrashcheniya 23.06.2022). (in Russian).
  4. Botkin.AI – iskusstvennyy intellekt na sluzhbe vrachey-rentgenologov i onkologov - URL: https://clck.ru/QEWcq (data obrashcheniya 23.06.2022). (in Russian).
  5. Porucheniye Zamestitelya Predsedatelya Pravitelstva Rossiyskoy Federatsii Yu.I. Borisova ot 24 oktyabrya 2019 g. № YuB-P7-9203. (in Russian).
  6. Prikaz Minpromtorga Rossii i FMBA Rossii ot 04 iyunya 2020 goda № 1805/1663 «Ob organizatsii sovmestnoy deyatelnosti po razvitiyu otechestvennykh promyshlennykh tekhnologiy v oblastyakh iskusstvennogo intellekta i meditsinskoy tekhniki» FGAU «RTsUD i RT». (in Russian).
  7. Perspektivnaya programma standartizatsii po prioritetnomu napravleniyu «Iskusstvennyy intellekt» na period 2021-2024 gg. Utverzhdena zamestitelem Ministra ekonomicheskogo razvitiya RF 22.12.2020. (in Russian).
  8. Letyagin A.Yu., Amelina E.V., Tuchinov B.N. i dr. Klassifikatsiya opukholey golovnogo mozga. ispolzuya metody iskusstvennogo intellekta na osnove MRT. III Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Borodinskiye chteniya». Novosibirskiy GU. 22.03.2022 (https://www.youtube.com/watch?v=k44MmOK1rvk). (in Russian).
  9. Oseledets I. Vychislitelnyye metody v razrabotke iskusstvennogo intellekta. 02.04.2018. (https://www.youtube.com/watch?v =HOlfunVaehY) (in Russian).
  10. Shakhgeldyan K.I. Metody iskusstvennogo intellekta v klinicheskoy meditsine: realnost i perspektivy. Nauchnyy doklad. 29.11.2021 (https://www.youtube.com/watch?v=PuIQqKIcIHM). (in Russian).
  11. Paraskevopulo K.M., Narkevich A.N., Vinogradov K.A. Primeneniye svertochnykh neyronnykh setey dlya raspoznavaniya zlokachestvennykh novoobrazovaniy na tsifrovykh izobrazheniyakh kozhi. Tekhnologii zhivykh sistem. 2021. T. 18. № 2. S. 31–38. (in Russian).
Date of receipt: 22.07.2022
Approved after review: 01.08.2022
Accepted for publication: 20.01.2023