350 rub
Journal Biomedical Radioelectronics №6 for 2022 г.
Article in number:
Action to an ultra-wideband electromagnetic field for pharmacological Pantovegin
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202206-09
UDC: 538.9; 538.573; 61; 534.1; 577.501; 615
Authors:

L.A. Morozova1, S.V. Savel’ev2

1,2 Institute of Radioengineering and Electronics of Russian Academy of Sciences (Fryazino, Moscow Region, Russia)

Abstract:

The article for the first time examines the change in the physical properties of the pharmacological preparation Pantovegin under the influence of the electromagnetic field of the magnetic field concentrator. In the scientific literature, a significant effect of the concentrator on aqueous solutions of various substances has been repeatedly noted, the result of which was recorded in experiments. The drug Pantovegin is known as a pharmacological agent of restorative and traditional medicine, which changes its properties under the influence of electromagnetic fields of non-thermal intensity. It is interesting to establish significant changes in the physical properties of Pantovegin under the action of a magnetic field concentrator signal, which is an ultra-wide spectrum electromagnetic oscillations.

The aim of the work is to determine the effect of the magnetic field concentrator signal on the pharmacological preparation Pantovegin by determining the dielectric properties of aqueous solutions at various concentrations. To reveal the possibility of using a magnetic field concentrator as an external signal source to change the properties of pharmacological preparations of biological origin. Experiments were carried out on radiothermal measurement of electromagnetic signals, which showed that a 30-minute effect of a magnetic field concentrator signal on Pantovegin solutions significantly changes their dielectric properties. The results obtained in the work allow us to establish ways to establish the metamorphosis of the pharmacological properties of drugs of biological origin under the influence of a magnetic field concentrator, which expands the possibility of creating new generation drugs for restorative and traditional medicine.

Pages: 76-83
For citation

Morozova L.A., Savel’ev S.V. Action to an ultra-wideband electromagnetic field for pharmacological Pantovegin. Biomedicine Radioengineering. 2022. V. 25. № 6. Р. 76-83. DOI: https://doi.org/10.18127/j15604136-202206-09 (In Russian)

References
  1. Betskiy O.V., Kislov V.V., Lebedeva N.N. Millimetrovyye volny i zhivyye sistemy. M.: SAYNS-PRESS. 2004. 272 s. (in Russian).
  2. Patent RF 2 154 870. Kontsentrator magnitnogo polya. V.V. Zelenkov. I.K. Zudin. L.D. Mironov. F.F. Kharlamov. Byul. № 23. 20.08.2000 g. (in Russian).
  3. Savelyev S.V., Betskiy O.V., Morozova L.A. Mekhanizm deystviya mnogochastotnogo i khaoticheskogo KVCh-izlucheniya na zhivyye i vodosoderzhashchiye obyekty. "Zhurnal radioelektroniki". Razdel "Biomeditsinskaya radioelektronika". 2012. № 11. S. 9. (in Russian).
  4. Savelyev S.V., Betskiy O.V., Morozova L.A. Krayne vysokochastotnoye izlucheniye i ego vozdeystviye na zhivyye organizmy. Biomeditsinskaya radioelektronika. 2013. № 12. S. 29–33. (in Russian).
  5. Betskiy O.V., Morozova L.A., Savelyev S.V. Smirnov V.F. Mekhanizm informatsionnogo vozdeystviya millimetrovogo i teragertsovogo izlucheniya na vodosoderzhashchiye i zhivyye obyekty. Biomeditsinskaya radioelektronika. 2017. № 11. S. 30–35. (in Russian).
  6. Betskiy O.V., Ermakov D.M., Morozova L.A., Savelyev S.V. Metod issledovaniya biologicheskikh i vodosoderzhashchikh sred. Biomeditsinskaya radioelektronika. 2019. № 3. S. 61–67. (in Russian).
  7. Savelyev S.V., Morozova L.A. Farmakologicheskiye preparaty biologicheskogo proiskhozhdeniya novogo pokoleniya. Mezhdunarodnaya nauchnaya konferentsiya «Fiziko-khimicheskaya biologiya kak osnova sovremennoy meditsiny». Belorusskiy gosudarstvennyy meditsinskiy universitet. g. Minsk. Belarus. 29 maya 2020 g. Tezisy dokladov konferentsii. S. 160 – 162. DOI: http://www.conf.bsu.by/data/ext/3085.pdf (in Russian).
  8. Morozova L.A., Savelyev S.V. Metod izmereniya radioteplovogo izlucheniya vodnykh rastvorov. Uspekhi sovremennoy radioelektroniki. 2021. T. 75. № 8. S. 12–19. DOI: https://doi.org/10.18127/j20700784-202108-02 (in Russian).
  9. Krivoruchko V.I. Priyemnyy radiometricheskiy modul 5-millimetrovogo diapazona dlin voln s maloshumyashim usilitelem na vkhode. Izv. vuzov. Ser. Radiofizika. 2003. T. XLVI. № 8–9. S. 782–786. (in Russian).
  10. Morozova L.A., Savelyev S.V. Biologicheskiy obyekt i kontsentrator magnitnogo polya. Biomeditsinskaya radioelektronika. 2022. T. 25. № 1. S. 31-39. DOI: https://doi.org/10.18127/j15604136-202201-04 (in Russian).
  11. Shutko A.M. SVCh-radiometriya vodnoy poverkhnosti. M.: Nauka. 1986. 188 s. (in Russian).
  12. Liu S., Jia G.-Z., Zhang S. Consideration of fractal and ion–water cooperative interactions in aqueous Na2SO4 and K2SO2 solutions by dielectric relaxation spectroscopy. Physica A. 2015. P. 1–8. DOI: http://dx.doi.org/10.1016/j.physa.2015.08.034 (in Russian).
Date of receipt: 11.05.2022
Approved after review: 12.05.2022
Accepted for publication: 28.11.2022