L.V. Sazykina1, S.N. Makoveev2, V.A. Lischuk3, S.V. Frolov4, I. Kofranek5, D.Sh. Gazizova6, G.V. Shevchenko7
1,6 Bakulev National Medical Research Center for Cardio-Vascular Surgery
of the Russian Ministry of Health (Moscow, Russia)
2 Tambov Regional State Budgetary Institution “Computer center” (Tambov, Russia)
3 Medical and Technical Sciences (Moscow, Russia)
4 Tambov State Technical University (Tambov, Russia)
5 Charles University, Institute of Pathophysiology (Prague, Czech Republic)
7 JSC “Open Technologies” (Moscow, Russia)
The relevance of constructing a mathematical model of the aorta is associated with the need to study and understand numerous disorders: from aortic valve malfunction to pathological changes in the vascular wall, as well as in connection with the choice of treatment tactics during cardiovascular operations. To date, numerous models of the left and right ventricles of the heart, individual vascular compartments and the vascular network as a whole have been created and studied. It is necessary to develop an initial module of the vascular arterial bed, including the aortic valve and the aortic bulb to study their behavior in normal and pathological conditions.
The purpose of the work – to develop a mathematical model of the aortic bulb (a module in the LabVIEW environment) to study its behavior in aortic valve defects and damage to the vascular branching of the aortic arch (aneurysms, cardiac surgery, etc.), as well as to include the module in an integral model of the cardiovascular system, which is the basis of a system for providing a doctor's decisions during cardiac surgery.
A mathematical description is made and the results of a simulation study in the LabVIEW environment of a model of the aortic bulb and aortic valve are presented. The functions of blood flow: volume, pressure and flow, uniquely in accordance with physiological laws, are set through the properties of vascular reservoirs: stiffness, tone, resistance and inertia. The model is constructed in terms that allow the description of the aortic bulb to be included in the branched multilevel vascular system, as well as the general model of the cardiovascular system.
The mathematical model of the aortic bulb module will allow us to investigate the effect of changes in the behavior of the output part of the left ventricle, including pathological ones, on blood flow in the vascular bed and vice versa, the effect of damage in the vascular bed of the aortic bulb on the behavior of the aortic valve and the heart as a whole.
Sazykina L.V., Makoveev S.N., Lischuk V.A., Frolov S.V., Kofranek I., Gazizova D.Sh., Shevchenko G.V. Implementation of a mathematical model of the aortic bulb in the LabVIEW environment. Biomedicine Radioengineering. 2022. V. 25. № 6. Р. 31-45. DOI: https://doi.org/10.18127/j15604136-202206-04 (In Russian)
- Gazizova D.Sh., Sazykina L.V., Makoveyev S.N., Kofranek I., Leonov B.I. Primeneniye tsifrovykh tekhnologiy dlya personifitsirovannykh rekomendatsiy po lecheniyu serdechnoy nedostatochnosti. Biomeditsinskaya radioelektronika. 2019. № 7. S. 75–86. (in Russian).
- Shatalov K.V., Arnautova I.V., Gamisoniya A.M. Khirurgicheskoye lecheniye podklapannogo stenoza aorty v detskom vozraste. Serdechno-sosudistyye zabolevaniya. Byulleten NTsSSKh im. A.N. Bakuleva RAMN. 2021. T. 22(2). S. 300–307. DOI: 10.24022/1810-0694-2021-22-2-300-307 (in Russian).
- Lishchuk V.A., Stolyar V.L. Obshcheye matematicheskoye opisaniye serdechno-sosudistoy sistemy. V kn. Primeneniye matematicheskikh modeley v klinike serdechno-sosudistoy khirurgii. M.: Mashinostroyeniye. 1980. S. 17–30. (in Russian).
- Lishchuk V.A. Realizatsiya matematicheskoy modeli elementarnogo sosudistogo uchastka v srede LabVIEW. oriyentirovannoy na kardiokhirurgicheskuyu kliniku. Klinicheskaya fiziologiya krovoobrashcheniya. 2006. № 4. S. 67–81. (in Russian).
- Makoveyev S.N., Gazizova D.Sh., Gorbach A.A., Lishchuk V.A., Frolov S.V. Doslizhennya matematichnoї modeli bifurkatsiї sudinnoї dilyanki z detalnistyu. shcho vidpovidaє kontrolevi khvorogo v seredovishchi LabVIEW. Medichna informatika ta inzheneriya. 2008. № 4. S. 25–45. (in Russian).
- Zavorokhin G.L. A mathematical model of an arterial bifurcation. Ural Mathematical Journal. 2019. V. 5(1). P. 109–126.
- Naik K.B. Mathematical modelling and Simulation of human systemic arterial system. International Journal of Ingineering and Innovative Technology (IJEIT). 2014. V. 4(1). P. 142–147.
- Liu J., Lan I.S., Marsden A.L. Mathematical modeling of the vascular system. arXiv:2102.11064v1 [q-bio.TO] 19 Feb 2021 https://docs.yandex.ru/docs/view?tm=1642491690&tld=ru&lang=en&name=2102.11064.pdf&text=mathematical%20model%20arterial&url=https%3A%2F%2Farxiv.or
- Campbell K.B., Rhode E.A., Cox R.H., Hunter W.C., Noordergraaf A. Functional consequences of expanded aortic bulb: a model study. Am. J. Physiol. 1981. V. 240. P. 200–210.
- Dougan D.F., Wade D.N. Octopamine receptors in the molluscan aortic bulb: effects of clozapine and chlordimeform. Journal of Comp. Biochem. Physiol. 1985. V. 82(1). Р. 193–197.
- Korakianitis T., Shi Y. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. Journal of Biomechanics. 2006. V. 39. P. 1964–1982.
- Korakianitis T., Shi Y. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Medical Engineering & Physics. 2006. V. 28. P. 613–628.
- Paradis N.A., Martin G.B., Goetting M.G., Rosenberg J.M., Rivers E.P., Appleton T.J., Nowak R.M. Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans. Insights into mechanisms. Journal of Circulation. 1989. V. 80. Р. 361–368.
- Yong G.L., Krishnan B.C., Lemmon J. A numerical simulation of mechanical heart valve closure fluid dynamics. Journal of Biomechanics. 2002. V. 35. P. 881–892.
- Lishchuk V.A., Mostkova E.V. Matematicheskaya model serdtsa dlya intensivnoy terapii i ostrogo fiziologicheskogo eksperimenta. V kn.: Primeneniye matematicheskikh modeley v klinike serdechno-sosudistoy khirurgii. M. 1980. S. 49–61. (in Russian)
- Lishchuk V.A. Matematicheskaya teoriya krovoobrashcheniya. M.: Meditsina. 1991. 256 s. (in Russian).
- Zacek M., Krause E. Numerical simulation of the blood flow in the human cardiovascular system. Journal of Biomechanics. 1996. V. 29(1). P. 13–20.