L.P. Safonova1, A.N. Dmitriev2, V.S. Shiryaeva3, D.Yu. Kuleshov4
1–4 Bauman Moscow State Technical University (Moscow, Russia)
Improving the efficiency of diagnosis and operational control of the treatment of dementia and concomitant neurodegenerative diseases and vascular pathologies is an urgent problem. The severity of brain tissue disorders at the cellular-tissue level and functional disorders, deterioration of nerve conduction and blood circulation, determine the severity of cognitive dysfunction. The method of evoked potentials permits to control the state of nerve conduction and indirectly evaluate such cognitive functions as attention, memory, counting, logical analysis. The method of time resolved near infrared spectroscopy with the ability to quantify the absorbing and scattering properties of brain tissues makes it possible to assess structural changes in tissues, impaired blood supply and oxygen consumption, and the presence and severity of vascular pathologies. The aim of this work is to develop an experimental setup for synchronous recording and analysis of EEG and spectrophotometry signals while performing cognitive tests with photostimulation.
An experimental setup consists of a 32-channel electroencephalograph, a modern two-channel tissue oximeter with an implemented frequency-domain approach of the time-resolved near infrared spectroscopy method, a synchronization unit, a photostimulator, which is a 3x3 LED matrix, and a personal computer. EEG electrodes are placed on the subject's head according to the international "10-20" system. Cognitive evoked potentials are recorded and analyzed in the parietal region, in leads CzA2 and PzA1. The tissue oximeter signals were registered bilaterally using a dual-cerebral fiber optic probe. During photostimulation it was necessary to isolate a target stimulus from a stream of random stimuli. The target stimulus was the moment when one of the diodes of the LED matrix glowed. It was necessary to mentally isolate the moment it was turned on and count the number of times it happened. The study protocol included a background recording of signals at rest for three minutes in the beginning and at the end of the experiment, the moments of electrical impulses for synchronization of EEG and spectrophotometry signals, control stimuli for the experimental setup checking and two periods of stimulation: one period with a stimulus frequency rate of 1 Hz, the other with 2 Hz. The break between the two stimulation modes was 20 seconds. The tissue oximeter "OxiplexTS" allows you to register the absolute values of optical parameters, absorption coefficients and transport scattering, and the absolute values of the concentrations of oxygenated, deoxygenated and total hemoglobin per unit of the studied tissue volume, as well as tissue saturation. The processing of experimental data was carried out in the Matlab R2019b environment.
The received preliminary results confirm the possibility of isolation using coherent averaging and the possibility of quantitative assessment of stimulus-dependent cognitive evoked potentials in the parietal region. Spectrophotometric signals recorded in the area of the prefrontal cortex provide the way of registering neurovascular coupling and assessing local changes in cerebral hemodynamics, and demonstrate the informativeness of slow hemodynamic oscillations. The results of the pilot experiment confirm the effectiveness of the proposed approach, and allow us to adjust the technical solutions and stimulation test methodology for further research on control subjects and groups of patients with dementia.
Safonova L.P., Dmitriev A.N., Shiryaeva V.S., Kuleshov D.Yu. Control of cognitive functions using spectrophotometry and evoked potentials. Biomedicine Radioengineering. 2022. V. 25. № 6. Р. 5-17. DOI: https://doi.org/10.18127/j15604136-202206-01 (In Russian)
- Yeung M.K., Chan A.S. A systematic review of the application of functional near-Infrared spectroscopy to the study of cerebral hemodynamics in healthy aging. Neuropsychology. 2021. V. 31. P. 139–166. https://doi.org/10.1007/s11065-020-09455-3
- Dobrynina L.A. Neyrovaskulyarnoye vzaimodeystviye i tserebralnaya perfuziya pri starenii. tserebralnoy mikroangiopatii i bolezni Altsgeymera. Annaly klinicheskoy i eksperimentalnoy nevrologii. 2018. № 12. S. 87–94. DOI:10.25692/ACEN.2018.5.11
- Agbangla N.F., Audiffren M., Albinet C.T. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: A systematic review of an emerging area of research. Ageing Research Reviews. 2017. V. 38. P. 52–66. http://dx.doi.org/ 10.1016/j.arr.2017.07.003
- Mijajlović M.D., Pavlović A., Brainin M., Heiss W.-D., Quinn T.J., Ihle-Hansen H.B., Hermann D.M., Assayag E.B., Richard E., Thiel A., Kliper E., Shin Y.-I., Kim Y.-H., Choi S.H., Jung S., Lee Y.-B., Sinanović O., Levine D.A., Schlesinger I., Mead G., Milošević V., Leys D., Hagberg G.,
Ursin M.H., Teuschl Y., Prokopenko S., Mozheyko E., Bezdenezhnykh A., Matz K., Aleksić V., Muresanu D.F., Korczyn A.D., Bornstein N.M. Post-stroke dementia – a comprehensive review. BMC Med. V. 15. № 11. P. 1–12. https://doi.org/10.1186/s12916-017-0779-7 - Kisler K., Nelson A.R., Montagne A., Zlokovic B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer's disease. Nat. Rev. Neurosci. 2017. V. 18. № 7. P. 419–434. doi:10.1038/nrn.2017.48
- Greenberg S.M., Bacskai B.J., Hernandez-Guillamon M., Pruzin J., Sperling R., van Veluw S.J. Cerebral amyloid angiopathy and Alzheimer disease – one peptide, two pathways. Nature Reviews Neurology. 2020. V. 16. №. 1. P. 30–42.
- Li R., Rui G., Chen W., Li S., Schulz P.E., Zhang Y. Early detection of Alzheimer’s disease using non-invasive near-infrared spectroscopy. Frontiers in aging neuroscience. 2018. V.10. P. 366-1-11. DOI=10.3389/fnagi.2018.00366
- Yu X., Ji C., Shao A. Neurovascular unit dysfunction and neurodegenerative disorders. Frontiers in neuroscience. 2020. V. 14. P. 334-1- 8. https://doi.org/10.3389/fnins.2020.00334
- Cicalesea P.A., Lia R., Ahmadia M.B., Wangb C., Francisa J.T., Selvarajc S., Schulzc P.E., Zhanga Y. An EEG-fNIRS hybridization technique in the four-class classification of Alzheimer’s disease. J. Neurosci. Methods. 2020. V. 336. P. 108618-1-23. doi:10.1016/j.jneumeth.2020.108618
- Li R., Nguyen T., Potter T., Zhang Y. Dynamic cortical connectivity alterations associated with Alzheimer's disease: An EEG and fNIRS integration study. NeuroImage: Clinical. 2019. V. 21. P. 101622-1-11.
- [Elektronnyy resurs] Bogolepova A.N., Vasenina E.E., Gomzyakova N.A., Gusev E.I., Dudchenko N.G., Emelin A.Yu., Zalutskaya N.M., Isayev R.I., Kotovskaya Yu.V., Levin O.S., Litvinenko I.V., Lobzin V.Yu., Martynov M.Yu., Mkhitaryan E.A., Neznanov N.G., Palchikova E.I., Tkacheva O.N., Cherdak M.A., Chimagomedova A.Sh., Yakhno N.N. Klinicheskiye rekomendatsii «Kognitiv-nyye rasstroystva u patsiyentov pozhilogo i starcheskogo vozrasta». Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2021. T. 121. № 10?3. S. 6–137. Rezhim dostupa https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2021/10-3/1199772982021103006 DOI: 10.17116/ jnevro20211211036 (Data obrashcheniya 15.06.2022).
- Obrig H. Review NIRS in clinical neurology — a ‘promising’ tool?. NeuroImage. 2014. V. 85. P. 535–546. http://dx.doi.org/10.1016/j.neuroimage.2013.03.045
- Polak T., Herrmann M.J., Muller L.D., Zeller J.B.M., Katzorke A., Fischer M., Spielmann F., Weinmann E., Hommers L., Lauer M., Fallgatter A.J., Deckert J. Near-infrared spectroscopy (NIRS) and vagus somatosensory evoked potentials (VSEP) in the early diagnosis of Alzheimer’s disease: rationale, design, methods, and first baseline data of the Vogel study. Journal of Neural Transmission. 2017.
V. 124. № 11. P. 1473–1488. - Shchukin I.A., Lebedeva A.V., Soldatov M.A., Fidler M.S. Klinicheskaya i instrumentalnaya otsenka terapii sosudistykh ko-gnitivnykh rasstroystv. Zhurnal nevrologii i psikhiatrii. 2018. № 7. S. 25–29. https://doi.org/10.17116/jnevro20181187125
- Kropotov Yu.D. Kolichestvennaya EEG. kognitivnyye vyzvannyye potentsialy mozga cheloveka i neyroterapiya: Per. s angl. pod red. V.A. Ponomareva. Donetsk: Izdatel Zaslavskiy A.Yu. 2010. 512 s.
- Gnezditskiy V.V. Vyzvannyye potentsialy mozga v klinicheskoy praktike. M.: MEDpress-in. 2003. 264 s.
- Yilmaz F.T., Özkaynak S.S., Barçin E. Contribution of auditory P300 test to the diagnosis of mild cognitive impairment in Parkinson’s disease. Neurol. Sci. 2017. V. 38. P. 2103–2109. https://doi.org/10.1007/s10072-017-3106-3
- Opticheskaya biomeditsinskaya diagnostika. V 2-kh t. T. 1: Per. s angl. pod red. V.V. Tuchina. M.: Nauka. 2007. 560 s.
- Wolf M., Morren G., Haensse D., Karen T., Wolf U., Fauchre J.C., Bucher H.U. Near infrared spectroscopy to study the brain: an overview. Opto-electronics review. 2008. V. 16. № 4. P. 413–419. DOI: 10.278/s11772-008-0042-z
- Yoo S.-H., Woo S.-W., Shin M.-J., Yoon J.A., Shin Y.-I., Hong K.-S. Diagnosis of mild cognitive impairment using cognitive tasks: A functional near-infrared spectroscopy study. Current Alzheimer Research. 2020. V. 17. №. 13. P. 1145–1160. DOI: 10.2174/1567205018666210212154941
- Althobaiti M., Al-Naib I. Recent developments in instrumentation of functional near-infrared spectroscopy systems. Applied Sciences. 2020. V. 10. № 18. P. 6522-1-25. https://doi.org/10.3390/app10186522
- Scholkmann F., Kleiser S., Metz A.J., Zimmermann R., Pavia J.M., Wolf U., Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage. 2014. V. 85. Part 1. № 15. P. 6–27. https://doi.org/10.1016/j.neuroimage.2013.05.004
- Chiarelli A.M., Zappasodi F., Di Pompeo F., Merla A. Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics. 2017. V. 4. № 4. P. 041411-1-18.