350 rub
Journal Biomedical Radioelectronics №5 for 2022 г.
Article in number:
Approximation model for measuring the end diastolic volume of an artificial heart ventricle
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202205-04
UDC: 602.1
Authors:

A.V. Shcherbachev1, I.A. Kudashov2, G.P. Itkin3, E.A. Bychkov4, A.N. Govorin5

1,2,4,5 Bauman Moscow State Technical University (Moscow, Russia)

3 FSBI “National Medical Research Center for Transplantology and Artificial Organs named after academician V.I. Shumakov Ministry of Health of Russia (Moscow, Russia)

Abstract:

In Russia since the beginning of the 21st century the total number of patients with CHF has doubled (from 7 to 15.0 mln), at the same time the number of patients with terminal CHF has increased 3.4 times (from 1.75 to 6.0 mln). Due to the existing shortage of donor organs, the development of mechanical circulatory support devices (MSC) is an urgent direction in modern biomedical engineering. These devices represent a "bridge to transplantation" capable of supporting the patient until a donor heart is obtained.

Objective – development and verification of an approximation model for the measurement of end-diastolic volume of an AHV by electroimpedance.

The model developed in this work is intended for automated testing of new MSC devices. Due to continuous determination of hydrodynamic parameters of the system and adaptive control it will be possible to simulate the work of the heart under normal conditions and in the presence of any pathologies. The use of this simulator in the process of training will make it possible to obtain more complete information about the work of human cardiovascular system, to trace the influence of pathologies and the effect of medical countermeasures on the hydrodynamic function of the heart.

The experimental results obtained in the article are of great practical importance for the creation of a biotechnical system for studying the efficiency of artificial circulatory devices.

Pages: 32-38
For citation

Shcherbachev A.V., Kudashov I.A., Itkin G.P., Bychkov E.A., Govorin A.N. Approximation model for measuring the end diastolic volume of an artificial heart ventricle. Biomedicine Radioengineering. 2022. V. 25. № 5. Р. 32-38. DOI: https://doi.org/10.18127/ j15604136-202205-04 (In Russian)

References
  1. Khubutiya M.Sh., Sokolov V.V., Redkoborodyy A.V., Kozlov I.A., Timerbayev V.Kh., Khutsishvili L.G., Bikbova N.M., Parkhomenko M.V., Kosolapov D.A. Opyt 70 transplantatsiy serdtsa v mnogoprofilnom meditsinskom uchrezhdenii. Transplantologiya. 2018. T. 10. № 3. S. 197–206. (in Russian).
  2. Tereshchenko S.N., Zhirov I.V. Khronicheskaya serdechnaya nedostatochnost: novyye vyzovy i novyye perspektivy. Terapevticheskiy arkhiv. 2017. T. 9. S. 4–9. (in Russian).
  3. Dzemeshkevich S.L., Trekova N.A., Babayev M.A., Chaus N.I., Lokshin L.S., Frolova Yu.V., Dombrovskaya A.V., Zaklyazminskaya E.V. Otdalennyye klinicheskiye rezultaty kak indikator fundamentalnykh problem v kardiotransplantologii. Klinicheskaya i eksperimentalnaya khirurgiya. Zhurnal imeni akademika B.V. Petrovskogo. 2020. T. 8. № 3. S. 22–26. (in Russian).
  4. Zhang X., Schulz B.L., Punyaeera C. The current status of heart failure diagnostic biomarkers. Expert Rev. Mol. Diagn. 2016. V. 16(4). P. 487–500.
  5. Kazakov E.N., Kormer A.Ya., Shemakin S.Yu. Otbor i podgotovka bolnykh k transplantatsii serdtsa. V kn.: V.I. Shumakov (red.). Transplantatsiya serdtsa: Rukovodstvo dlya vrachey. M.: MIA. 2006. S. 30–45. (in Russian).
  6. Koomalsingh K., Kobashigawa J.A. The future of cardiac transplantation. Annals of Cardiothoracic surgery. 2018. № 8 (1). P. 135–142.
  7. Gotye S.V. Innovatsii v transplantologii: razvitiye programmy transplantatsii serdtsa v Rossiyskoy Federatsii. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2017. T. 21. № 3. S. 61–68. (in Russian).
  8. Gotye S.V., Khomyakov S.M. Donorstvo i transplantatsiya organov v 2018 godu. Vestnik transplantatsii i iskusstvennykh organov. 2019. № 21 (3) S. 7–32. (in Russian).
  9. Shumakov D.V., Tolpekin V.E., Ignatova N.V. Mekhanicheskiye sistemy obkhoda serdtsa: meditsinskiye aspekty. Biotekhnosfera. 2011. № 16 (4) S. 6–8. (in Russian).
  10. Briko A.N., Selutina S.E., Parnovskaya A.D., Emelin M.E. Determination of Tissue Properties Based on Modeling and Electrical Impedance Registration,” in 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2020. P. 28–31.
  11. Kudashov I., Shchukin S., Al-Harosh M., Shcherbachev A. Smart Bio-Impedance-Based Sensor for Guiding Standard Needle Insertion. Sensors. 2022. V. 22(2). P. 665.
  12. Shcherbachev A., Kudashov I.A., Itkin G., Bychkov E.A., Galiamov A.Z. Development of the Unit for Measuring the Hydrodynamic Parameters of AHV. In Proceedings of the 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). Yekaterinburg. Russia. 7–8 May 2020. P. 36–39.
  13. Shcherbachev A., Kudashov I.A., Itkin G., Bychkov E.A., Galiamov A.Z. Determination of Electrode Assembly Parameters for Electroimpedance Measurement of AHV Volume. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2021. P. 0125-0128.
  14. Kobelev A.V., Shchukin S.I. Anthropomorphic prosthesis control based on the electrical impedance signals analysis. Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2018. P. 33–36.
  15. Quadra website URL: https://eliko.tech/quadra-impedance-spectroscopy/ (accessed 19.05.2022)
  16. Grimnes S., Martinsen Ø.G. Bioimpedance and Bioelectricity Basic. Academic Press: Cambridge. MA. USA. 2015. P. 563.
  17. Tikhomirov A.N., Briko A.N., Seleznev N.V., Shchukin S.I., Levando A.M., Murashko M.A. Development of a Geometric Model of the Heart and Chest for Multichannel Electrical Impedance Computer Cardiography Technology. In Proceedings of the 2020 IEEE Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). Yekaterinburg. Russia. 13–14 May 2020. P. 32–35.
  18. Al-harosh M., Yangirov M., Kolesnikov D., Shchukin S. Bio-Impedance Sensor for Real-Time Artery Diameter Waveform Assessment. Sensors. 2021. V. 21. P. 8438.
  19. Shcherbachev A.V., Bychkov E.A., Kudashov I.A., Volkov A.K. Research coaxial needle electrode characteristics for the automated vein puncture control system. Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2018. P. 37–41.
Date of receipt: 22.06.2022
Approved after review: 24.06.2022
Accepted for publication: 28.09.2022