350 rub
Journal Biomedical Radioelectronics №5 for 2022 г.
Article in number:
Wearable device for arterial pressure monitoring
DOI: https://doi.org/10.18127/j15604136-202205-02
UDC: 61; 544.03; 534-8
Authors:

M.A. Yangirov1, D.A. Kolesnikov2, M.B. Al-Harosh3

1–3 Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

Real-time measurement of arterial diameter provides a stable estimate of approximate values for predicting the state of cardiovascular disease, including absolute values of blood pressure, its rate of change and variability.

Development of a device for continuous monitoring of indirect parameters of blood pressure using the electrical impedance method, which includes a local assessment of pulse wave velocity, diameter and stiffness index of artery. To this end, the measurement of electrical impedance is carried out using the developed flexible multichannel electrode system. And the parameters of the electrode system are chosen to ensure high measurement accuracy based on the data of analytical model. At the same time, there is an initial calibration of the device, which provides the calculation of the arterial stiffness index.

A mathematical model has been developed that makes it possible, on the basis of a priori data on a biological object, to choose the optimal parameters of electrode systems. An algorithm is proposed for estimating the contribution of erythrocyte orientation effects to the change in impedance. The measured electrical impedance signal obtained from the projection area of the artery provided continuous monitoring of blood pressure with an accuracy of 0.2 mm Hg. relative to control values

The development of an electrical impedance device for blood pressure monitoring will make it possible to more accurately predict the patient's condition compared to existing non-invasive methods for measuring blood pressure.

Pages: 6-19
For citation

Yangirov M.A., Kolesnikov D.A., Al-Harosh M.B. Wearable device for arterial pressure monitoring. Biomedicine Radioengineering. 2022. V. 25. № 5. Р. 6-19. DOI: https://doi.org/10.18127/j15604136-202205-02 (In Russian)

References
  1. Zakrzewski A.M., Anthony B.W. Noninvasive Blood Pressure Estimation Using Ultrasound and Simple Finite Element Models. IEEE Trans. Biomed. Eng. 2018. V. 65. № 9. P. 2011–2022.
  2. Seo J. et al. Noninvasive arterial blood pressure waveform monitoring using two- element ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2015. V. 62. № 4. P. 776–784.
  3. Oliver J.J., Webb D.J. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol. 2003. V. 23. № 4. P. 554–566.
  4. Hirai T. et al. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation. American Heart Association. 1989. V. 80. № 1. P. 78–86.
  5. Litvyakov A.M. i dr. Rol nekotorykh faktorov v formirovanii arterialnoy gipertonii. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta. 2005. T. 4. №. 1. S. 121–126.
  6. Frolova E. V. Arterialnaya gipertenziya. Rossiyskiy semeynyy vrach. 2016. T. 20. № 2. S. 1–18.
  7. Vappou J. et al. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM). Physiol. Meas. 2011. V. 32. № 10. P. 1653–1662.
  8. Emelianchik I.Yu., Balbatun O.A., Glebov O.A. Analiz tipov gemodinamiki u devushek podrostkovogo vozrasta metodom impendansnoy reografii. Voyennaya meditsina. 2010. № 4. S. 138–140.
  9. Huynh T.H., Jafari R., Chung W.-Y. An Accurate Bioimpedance Measurement System for Blood Pressure Monitoring: 7. Sensors. Multidisciplinary Digital Publishing Institute. 2018. V. 18. № 7. P. 2095.
  10. Tissue Frequency Chart » IT’IS Foundation [Electronic resource]. URL: https://itis.swiss/virtual-population/tissue-properties/database/tissue-frequency-chart/ (accessed: 07.12.2021).
  11. Shchukin S.I. Osnovy vzaimodeystviya fizicheskikh poley s bioobyektami: Uchebnoye posobiye. M.: Izd-vo MGTU. 2002.
  12. Bramwell J., Hill A. The Velocity of the Pulse Wave in Man. Royal Society of London. 1922.
  13. Comparison of sequentially measured Aloka echo-tracking one-point pulse wave velocity with SphygmoCor carotid–femoral pulse wave velocity - Olga Vriz, Caterina Driussi, Salvatore La Carrubba, Vitantonio Di Bello, Concetta Zito, Scipione Carerj, Francesco Antonini-Canterin, 2013 [Electronic resource]. URL: https://journals.sagepub.com/doi/10.1177/2050312113507563 (accessed: 14.05.2022).
  14. Saiki A. et al. The Role of a Novel Arterial Stiffness Parameter, Cardio-Ankle Vascular Index (CAVI), as a Surrogate Marker for Cardiovascular Diseases. J. Atheroscler. Thromb. 2016. V. 23. № 2. P. 155–168.
  15. Harada A. et al. On-line noninvasive one-point measurements of pulse wave velocity. Heart Vessels. 2002. V. 17. № 2. P. 61–68.
  16. Antonini-Canterin F. et al. Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review from the cardiologist’s point of view. Eur. J. Echocardiogr. 2009. V. 10. № 1. P. 36–43.
  17. Wang C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature biomedical engineering. Nature Publishing Group. 2018. V. 2. № 9. P. 687–695.
  18. Callaghan F.J. et al. Relationship between pulse-wave velocity and arterial elasticity. Med. Biol. Eng. Comput. 1986. V. 24. № 3. P. 248–254.
  19. Mugeb A., Ivan K., Volkov A. The brachial artery localization for blood pressure monitoring using electrical impedance measurement. 2018 Ural Symposium on Biomedical Engineering Radioelectronics and Information Technology (USBEREIT). 2018. P. 79–82.
  20. Hammoud A., Tikhomirov A., Shaheen Z. Automatic Bio-impedance Signal Analysis: Smoothing Processes Efficacy Evaluation in Determining the Vascular Tone Type. 2021. P. 0113–0116.
  21. P M N. et al. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation. IEEE Trans. Biomed. Eng. 2018. V. 65. № 11. P. 2392–2404.
  22. Al-Harosh M.B., Shchukin S.I. Numerical Modeling of the Electrical Impedance Method of Peripheral Veins Localization. World Congress on Medical Physics and Biomedical Engineering. Toronto (Canada). 2015. P. 1683–1686. DOI: 10.1007/978-3-319-19387-8_409
  23. Al-Harosh M. et al. Bio-Impedance Sensor for Real-Time Artery Diameter Waveform Assessment: 24. Sensors. Multidisciplinary Digital Publishing Institute. 2021. V. 21. № 24. P. 8438.
  24. Sorace A.G. et al. Ultrasound Measurement of Brachial Artery Elasticity Before Hemodialysis Access Placement. J. Ultrasound Med. 2012. V. 31. № 10. P. 1581–1588.
Date of receipt: 22.06.2022
Approved after review: 24.06.2022
Accepted for publication: 28.09.2022