350 rub
Journal Biomedical Radioelectronics №4 for 2022 г.
Article in number:
Determination of spatial location hidden conductive materials inside a biological object
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202204-05
UDC: 621.317
Authors:

T.A. Zhilnikov1, V.I. Zhulev2, A.A. Zhilnikov3

1,3 Academy of the Federal Penitentiary Service of Russia (Ryazan, Russia)

2 Ryazan State Radio Engineering University named after V.F. Utkin (Ryazan, Russia)

Abstract:

The increasing requirements for increasing the efficiency of scientific research lead to the need to develop new methods and measuring instruments. So, in particular, the problem of noninvasive research of the internal structure of biological objects, in order to identify the spatial position of hidden metal inclusions in the human body, is one of the most important in medicine and related areas of medical technology. Such inclusions are either foreign bodies that have penetrated in its tissues, organs and cavities through damaged integuments or through natural openings, or joint prostheses surgically introduced in the body for therapeutic purposes, fastening bone fragments of spokes, rods, plates, etc. The procedure of identifying their position in a biological object is associated with difficulties and is sometimes a rather laborious process. At the moment, the solution to this problem is carried out for the most part by non-invasive methods of introscopy, which require careful use, but in practice, conducting human research with these methods is not always possible. As an alternative solution for identifying inclusions, magnetic research are increasingly being used, which are currently one of the most effective reserves for improving quality, reliability and safety, and are also on the next stage of development.

Thus, the purpose of the work is to develop a method for obtaining an image of the boundaries of the spatial location inside a biological object, hidden foreign or structurally provided embedded conductive materials, in relation to the non-invasive study of biological objects in order to determine and then visualize possible metal foreign inclusions inside them.

The paper proposes an original method based on the magneticinduction method for determining the estimate of the tangential component of magnetic induction differentiated in the chosen direction. The method is supplemented by a reconstruction procedure based on back projection with preliminary filtering of linear projections of the redistributed magnetic flux density of an initially homogeneous magnetic field as a result of its redistribution associated with the flow of closed vortex volumetric currents in a conducting material. Moreover, such linear projections are obtained by controlled spatial displacement of the magnetically sensitive working body, integrating the vector function of the field over the plane.

The technical result of applying the proposed method is the expansion of the functionality of magnetometry, which consists in obtaining in places inaccessible to mechanical penetration, the image of the boundaries of the spatial location inside the biological object, hidden conductive materials.

Pages: 39-45
For citation

Zhilnikov T.A., Zhulev V.I., Zhilnikov A.A. Determination of spatial location hidden conductive materials inside a biological object. Biomedicine Radioengineering. 2022. V. 25. № 4. Р. 39-45. DOI: https://doi.org/10.18127/j15604136-202204-05 (In Russian)

References
  1. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Otsenka razreshayushchey sposobnosti sistemy neinvazivnogo magnitoinduk-tsionnogo issledovaniya ferromagnitnykh vklyucheniy biologicheskikh obyektov dlya ogranichennogo chisla izmereniy. Bio-meditsinskaya radioelektronika. 2017. № 7. S. 20–29.
  2. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Nerazrushayushchaya registratsiya raspredeleniya plotnosti magnitnogo potoka vnutri biologicheskikh obyektov. Biomeditsinskaya radioelektronika. 2013. № 7. S. 26–31.
  3. Romanov I.O., Stroitelev D.V., Makiyenko V.M. Fizicheskiye osnovy nerazrushayushchikh metodov kontrolya: Ucheb. posobiye. Khabarovsk: Izd-vo DVGUPS. 2008. 108 s.
  4. Petrovskiy B.V. Entsiklopedicheskiy slovar meditsinskikh terminov. T. 1. M.: Sovetskaya entsiklopediya. 1982. 464 s.
  5. Remizov A.N., Maksina A.G., Potapenko A.Ya. Meditsinskaya i biologicheskaya fizika: Ucheb. dlya vuzov. M.: Drofa. 2003. 560 s.
  6. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Polucheniye izobrazheniya raspredeleniya magnitnogo polya vnutri biologicheskikh obyektov. Biomeditsinskaya radioelektronika. 2011. № 7. S. 41–46.
  7. Levin G.G., Vishnyakov G.N. Opticheskaya tomografiya. M.: Radio i svyaz. 1989. 224 s.
  8. Troitskiy I.N. Statisticheskaya teoriya tomografii. M.: Radio i svyaz. 1989. 240 s.
  9. Klyuyev V.V. Nerazrushayushchiy kontrol i diagnostika: Spravochnik. T. 6. M.: Mashinostroyeniye. 2006. 848 s.
  10. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Vychislitelnoye modelirovaniye protsedury primeneniya sposoba magnito-induktsionnogo issledovaniya dlya analiza formy skrytykh magnitnykh inorodnykh vklyucheniy vnutri biologicheskikh ob-ektov. Biomeditsinskaya radioelektronika. 2014. № 7. S. 33–42.
  11. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Razrabotka i fizicheskoye obosnovaniye realizatsii informatsionno-izmeritelnoy sistemy magnitoinduktsionnogo issledovaniya biologicheskikh obyektov. Biomeditsinskaya radioelektro-nika. 2015. № 5. S. 14–20.
  12. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Prakticheskaya realizatsiya sistemy neinvazivnogo magnitoinduktsionnogo issledovaniya biologicheskikh obyektov. Biomeditsinskaya radioelektronika. 2016. № 6. S. 27–37.
  13. Govorkov V.A. Elektricheskiye i magnitnyye polya. M.: Svyazizdat. 1951. 341 s.
  14. Preobrazhenskiy A.A. Teoriya magnetizma. magnitnyye materialy i elementy. M.: Vysshaya shkola. 1972. 288 s.
  15. Goldfayn I.A. Vektornyy analiz i teoriya polya: Ucheb. posobiye. M.: Gos. izd-vo fiziko-mat. lit. 1962. 132 s.
Date of receipt: 24.05.2022
Approved after review: 11.07.2022
Accepted for publication: 22.07.2022