350 rub
Journal Biomedical Radioelectronics №2-3 for 2022 г.
Article in number:
Proteomic studies of the state of the body in secondary hemorrhagic purpura after long-term space flights
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202202-01
UDC: 57.042, 577.2, 571.2
Authors:

I.N. Goncharov1, L.H. Pastushkova2, M.I. Koloteva3, A.G. Goncharova4,
D.N. Kashirina
5, T.M. Glebova6, K.S. Kireev7, I.M. Larina8

1–6,8 State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow, Russia)

7 Gagarin Research and Testing Cosmonaut Training Center (Moscow Region, Zvezdny Gorodok, Russia)

Abstract:

Local petechial hemorrhages of soft tissues were noted in some astronauts after landing on the first day.

The aim of the work is to formulate recommendations for additional examination based on the analysis of the proteomic response of the human body in secondary hemorrhagic purpura observed in some astronauts after landing.

Blood samples of 13 Russian cosmonauts (average ± SD age: 44±6 years, all men) were analyzed by proteomic and bioniformational methods, in which local petechial hemorrhages in the soft tissues of the back and lower legs were noted after landing. A group of proteins that significantly differ (p-value <0.05) on the first day after CP compared with individual preflight data regulating signaling pathways and processes of endothelial damage, vascular injury, activation of coagulation, proinflammatory, etc. cascades, and the opposite ones that protect against reperfusion injury and apoptosis. Activation of the processes of "protection from injury and reperfusion injury" assumes minimal risks of developing long-term complications. Taking into account the conjugacy of external and internal hemorrhages, a number of examinations of parenchymal organs are recommended to clarify the volume of structural changes.

Secondary hemorrhagic purpura after landing is a multifactorial condition. Providing up-to-date information on the state of proteomic pathology involved in the processes of "damage" and "protection from damage" can increase the effectiveness of clinical and functional examination in the early postpartum period in individuals with local petechial hemorrhages of soft tissues.

Pages: 5-14
For citation

Goncharov I.N., Pastushkova L.H., Koloteva M.I., Goncharova A.G., Kashirina D.N., Glebova T.M., Kireev K.S., Larina I.M. Proteomic studies of the state of the body in secondary hemorrhagic purpura after long-term space flights. Biomedicine Radioengineering. 2022. V. 25. № 2–3. Р. 5-14. DOI: https://doi.org/10.18127/j15604136-202202-01 (In Russian)

References
  1. Kotovskaya A.R., Koloteva M.I. Perenosimost peregruzok kosmonavtami MKS. Mezhdunarodnaya kosmicheskaya stantsiya. Rossiyskiy segment. 2011. T. 1. S. 236–267. (in Russian).
  2. Pastushkova L.Kh., Kashirina D.N., Kononikhin A.S., Brzhozovskiy A.G., Ivanisenko V.A., Tiys E.S., Novoselova A.M., Kusto M.-A., Nikolayev E.N., Larina I.M. Vliyaniye 17 dlitelnykh kosmicheskikh poletov na belki mochi cheloveka. funktsionalno svyazannyye s endoteliyem. Fiziologiya cheloveka. 2018. T. 44. S. 60–67. (in Russian).
  3. Kashirina D.N., Pastushkova L.Kh., Persi E.Dzh., Borchers K.Kh., Brzhozovskiy A. G., Larina I.M. Izmeneniye belkovogo sostava plazmy kosmonavtov posle kosmicheskogo poleta i ego znacheniye dlya funktsiy endoteliya. Fiziologiya cheloveka. 2019. T. 45. S. 75–82. (in Russian).
  4. Kuzichkin D.S., Markin A.A., Zhuravleva O.A., Koloteva M.I., Vostrikova L.V., Glebova T.M., Loginov V.I. Vliyaniye kharaktera podkozhnykh krovoizliyaniy posle zaversheniya kosmicheskikh poletov na sistemu plazmennogo gemostaza kosmonavtov. Aviakosmicheskaya i ekologicheskaya meditsina. 2019. T. 53. № 6. S. 38–41. (in Russian).
  5. Kotovskaya A.R., Vartbaronov R.A. Dlitelnyye lineynyye uskoreniya. Kosmicheskaya biologiya i meditsina. Sovm. ros.-amer. izd.: V 5 t. V.V. Antipov, A.I. Grigoryev (RF). K. Lich Khantun (SShA). red. 1997. T. 3. Kn. 2. S. 10–67. (in Russian).
  6. Kotovskaya A.R. Perenosimost chelovekom peregruzok v kosmicheskikh poletakh i iskusstvennaya gravitatsiya. Aviakosmicheskaya i ekologicheskaya meditsina. 2017. T. 51. № 5. S. 5–21. (in Russian).
  7. Kotovskaya A.R. Priznaki negativnykh effektov kumulyatsii u cheloveka i zhivotnykh pri deystvii peregruzok raznogo naprav-leniya primenitelno k praktike aviatsionnykh i kosmicheskikh poletov. Aviakosmicheskaya i ekologicheskaya meditsina. 2015. T. 49. № 6. S. 14–18. (in Russian).
  8. Kotovskaya A.R., Vil-Viliams I.F., Lukianyuk V.Yu. Fiziologicheskiye reaktsii cheloveka na deystviye peregruzok pri vyve-denii na orbitu i spuske na zemlyu kosmicheskikh korabley «Soyuz». Fiziologiya cheloveka. 2003. T. 29. № 6. S. 23–30. (in Russian).
  9. Vasilyev P.V., Sokolova M.M. i dr. Vliyaniye poperechno napravlennykh peregruzok na funktsiyu pochki. Problemy kosmicheskoy biologii. 1967. T. 6. S. 275–282. (in Russian).
  10. Ivanisenko V.A., Saik O.V., Ivanisenko N.V. et al. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Systems Biology. 2015. V. 9(2). P. S2.
  11. Rea G., Cristofaro F., Pani G., Pascucci B., Rizzo A.M. Microgravity-driven remodeling of the proteome reveals insights into molecu-lar mechanisms and signal networks involved in response to the space flight environment. Journal of Proteomics. 2016. V. 137. P. 3–18.
  12. Wu B., Mottola G., Schaller M., Upchurch G.R.-Jr., Conte M.S. Resolution of vascular injury: Specialized lipid mediators and their evolving therapeutic implications. Mol. Aspects Med. 2017 Dec. V. 58. P. 72–82.
  13. Zheng D., Chen H., Davids J., Bryant M., Lucas A. Serpins for diagnosis and therapy in cancer. Cardiovasc. Hematol. Disord. Drug Targets. 2013. Aug. V. 13(2). P. 123–132.
  14. Koukos G., Sevigny L., Zhang P., Covic L., Kuliopulos A. Serine and metalloprotease signaling through PAR1 in arterial thrombosis and vascular injury. IUBMB Life. 2011 Jun. V. 63(6). P. 412-418.
  15. Feng Y., Hu L., Xu Q., Yuan H., Ba L., He Y., Che H. Cytoprotective Role of Alpha-1 Antitrypsin in Vascular Endothelial Cell Under Hypoxia/Reoxygenation Condition. J. Cardiovasc. Pharmacol. 2015 Jul. V. 66(1). P. 96–107.
  16. Götzfried J., Smirnova N.F.1., Morrone C., Korkmaz B., Yildirim A., Eickelberg O., Jenne D.E. Preservation with ?1-antitrypsin improves primary graft function of murine lung transplants. J. Heart Lung Transplant. 2018 Aug. V. 37(8). P. 1021–1028.
  17. Lin H., Chen M., Tian F., Tikkanen J., Ding L., Andrew Cheung H.Y., Nakajima D., Wang Z., Mariscal A., Hwang D., Cypel M., Keshavjee S., Liu M. 1-Anti-trypsin improves function 18 of porcine donor lungs during ex-vivo lung perfusion. J. Heart Lung Transplant. 2018 May. V. 37(5). P. 656–666.
  18. Jeong K.H., Lim J.H., Lee K.H., Kim M.J., Jung H.Y., Choi J.Y., Cho J.H., Park S.H., Kim Y.L., Kim C.D. Protective Effect of Alpha 1-Antitrypsin on Renal Ischemia-Reperfusion Injury. Transplant. Proc. 2019 Oct. V. 51(8). P. 2814–2822.
  19. Maeda A., Ohta K., Ohta K., Nakayama Y., Hashida Y., Toma T., Saito T., Maruhashi K., Yachie A. Effects of antithrombin III treat-ment in vascular injury model of mice. Pediatr. Int. 2011 Oct. V. 53(5). P. 747–753.
  20. Iba T., Levy J.H., Hirota T., Hiki M., Nagaoka I. Protection of the endothelial glycocalyx by antithrombin in an endotoxin-induced rat model of sepsis. Thrombosis Research. 2018. V. 171. № 1. R. 1–6.
  21. Lundbech M., Krag A.E., Christensen T.D., Hvas A-M. Thrombin generation. thrombin-antithrombin complex. and prothrombin frag-ment F1+2 as biomarkers for hypercoagulability in cancer patients. Thrombosis Research. 2020 Feb. V. 186. P. 80–85.
  22. Schmull S., Wang Z., Gao L., Lv J., Li J., Xue S. Angiotensins and Their Receptors in Cardiac and Vascular Injury. Curr. Hypertens. Rev. 2016. V. 12(3). P. 170–180.
  23. Jankowski V., Vanholder R., van der Giet M., Tolle M., Karadogan S., Gobom J., Furkert J., Oksche A., Krause E., Tran T.N., Tepel M., Schuchardt M., Schluter H., Wiedon A., Beyermann M., Bader M., Todiras M., Zidek W., Jankowski J. Mass-spectrometric identi-fication of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol. 2007. V. 27. P. 297–302.
  24. Tao-Cheng Wu., Chiu-Yang Lee., Shing-Jong Lin., Jaw-Wen Chen. Aliskiren Inhibits Neointimal Matrix Metalloproteinases in Exper-imental Atherosclerosis. Acta Cardiol. Sin. 2016 Sep. V. 32(5). P. 586–593.
  25. McFadyen JD., Zeller J., Potempa LA., Pietersz G., Eisenhardt SU., Peter K. C-Reactive Protein and Its Structural Isoforms: An Evo-lutionary Conserved Marker and Central Player in Inflammatory Diseases and Beyond. Subcell. Biochem. 2020. V. 94. P. 499–520.
  26. Sproston N.R., Ashworth J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018. V. 9. P. 754.
  27. Boncler M., Wu Y., Watala C. The Multiple Faces of C-Reactive Protein-Physiological and Pathophysiological Implications in Cardio-vascular Disease. Molecules. 2019 May 30. V. 24(11). P. 2062.
  28. McFadyen J.D., Kiefer J., Braig D. et al. Dissociation of C-reactive protein localizes and amplifies inflammation: evidence for a direct biological role of C-reactive protein and its conformational changes. Front. Immunol. 2018. V. 9. P. 1351.
  29. Lv J-M., Wang M-Y. In vitro generation and bioactivity evaluation of C-reactive protein intermediate. PLoS ONE. 2018. V. 13.
    P. e0198375.
  30. Pathak A., Agrawal A. Evolution of C-reactive protein. Front. Immunol. 2019. V. 10. P. 943.
  31. Chan Y.H., Harith H.H., Israf D.A., Tham C.L. Differential Regulation of LPS-Mediated VE-Cadherin Disruption in Human Endothelial Cells and the Underlying Signaling Pathways: A Mini Review. Front. Cell. Dev. Biol. 2020 Jan 6. V. 7. P. 280.
  32. Frismantiene A., Philippova M., Erne P., Resink T.J. Cadherins in vascular smooth muscle cell (patho) biology: Quid nos scimus? Cell Signal. 2018 May. V. 45. P. 23–42.
  33. Nakamura T. Roles of short fibulins. a family of matricellular proteins. in lung matrix assembly and disease. Matrix Biol. 2018 Nov. V. 73.
    P. 21–33.
  34. Blascke de Mello M.M., Parente J.M., Schulz R., Castro M.M. Matrix metalloproteinase (MMP)-2 activation by oxidative stress de-creases aortic calponin-1 levels during hypertrophic remodeling in early hypertension. Vascul. Pharmacol. 2019 May. V. 116. P. 36–44.
  35. Barhoumi T., Fraulob-Aquino J.C., Mian M.O.R., Ouerd S., Idris-Khodja N., Huo K.-G., Rehman A., Caillon A., Dancose-Giambattisto B., Ebrahimian T., Lehoux S., Paradis P., Schiffrin E.L. Matrix metalloproteinase-2 knockout prevents angiotensin II?induced vascular injury. Cardiovasc. Res. 2017. V. 113. P. 1753–1762.
  36. Pastushkova L.Kh., Koloteva M.I., Goncharova A.G., Glebova T.M., Goncharov I.N., Kashirina D.N., Brzzhovskiy A.G., Kireyev K.S., Larina I.M. Izmeneniya proteoma krovi kosmonavtov s mikro- i makrososudistymi travmami pri peregruzkakh na za-klyuchitelnom etape dlitelnykh kosmicheskikh poletov. Aviakosmicheskaya i ekologicheskaya meditsina. 2020. T. 54. № 5. S. 5–14. (in Russian).
Date of receipt: 28.02.2022
Approved after review: 10.03.2022
Accepted for publication: 28.04.2022