350 rub
Journal Biomedical Radioelectronics №1 for 2022 г.
Article in number:
Review of optical and inertial systems for recording the relative position and movement of the human spine
Type of article: overview article
DOI: https://doi.org/10.18127/j15604136-202201-03
UDC: 681.2:615.47
Authors:

A.S. Danilova1, O.V. Tikhonenkova2, T.V. Sergeev3, A.B. Chkhindjeria4

1–4 Saint-Petersburg State University of Aerospace Instrumentation (Saint-Petersburg, Russia)

Abstract:

Formulation of the problem. The examination of the cervical spine (CS) is one of the leading places in the diagnosis of pathologies. Any changes in this department can lead to interruptions in the work of the brain due to the lack of proper blood circulation in the vessels. This is due to the fact that the cervical vertebral arteries, penetrating through the canal running through the openings of the transverse processes of the vertebrae, carry 30% of the blood to the parts of the brain located in the back of the cranium.

A decrease in the lumen of the vertebral arteries due to their clamping leads to a significant insufficiency of the blood supply to the brain, and manifests itself in a variety of clinical signs: headache, nausea, impaired motor coordination, and many others. This complex symptom is associated with the vertebral artery syndrome (vertebrobasilar arterial system G45.0 according to ICD-10), its most significant etiopathogenetic factor is the pathology of the cervical spine.

When diagnosing this disease, it is necessary to conduct radiography and rheoencephalography (REG) with functional tests, magnetic resonance imaging and computed tomography (MRI and CT) of the spine and brain, ophthalmoscopy, audiometry and other studies. During diagnostics, special tools (mathematical modeling, hardware-software and analytical tools) are used to study the morphological and functional state of the structures of the cervical spine, including its osteo-ligamentous apparatus in the long-term monitoring mode.

Purpose of work. Analytical review for the further development of technical methods and means of recording the motor activity of the human cervical spine; creation of a mobile technical system consisting of sets of sensors located on the spinous processes of the human cervical spine and allowing the calculation of the angles of displacement of the vertebrae relative to each other. In the future, this will make it possible to create a new biotechnical system and diagnostic method for diagnosing pathologies of the cervical spine.

Results. The article presents modern methods and approaches to determining the displacements of CS structures, depending on the motor activity of a person in space; presents an analytical review of the literature, patent search and a review of commercial proposals on the market. Technical solutions are classified according to the method of data recording: using X-ray systems, inertial systems, based on special sensors and using optical systems with motion capture (the process of recording the movement of objects or people). The comparison of the considered methods is carried out and the need to develop a new system for determining the displacements of the CS is shown.

Practical significance. The creation of a system for studying the relative position and movement of the bone structures of the human spine will open the way for the development of methods and tools for identifying the mechanisms of the morphological and functional relationship of the cervical spine structures state and the vertebral artery of a person, leading to an understanding of the causes of the vertebrobasilar arterial system syndrome and its development, and also to the development of appropriate therapeutic and rehabilitative procedures.

Pages: 20-30
For citation

Danilova A.S., Tikhonenkova O.V., Sergeev T.V., Chkhindjeria A.B. Review of optical and inertial systems for recording the relative position and movement of the human spine. Biomedicine Radioengineering. 2022. V. 25. № 1. Р. 20-30. DOI: https://doi.org/ 10.18127/j15604136-202201-03 (In Russian).

References
  1. Gadzhet dlya korrektsii osanki Lumo Lift [elektronnyy resurs] – Rezhim dostupa: https://www.lumobodytech.com/lumo-lift/ (data obrashcheniya 01.07.2021) (in Russian).
  2. Karmannyy kontroller osanki i dykhaniya Prana [elektronnyy resurs] – Rezhim dostupa: http://www.mobipukka.ru/2016/02/03/ karmannyj-kontroller-osanki-i-dyxaniya-prana-snimet-stress/ (data obrashcheniya 01.07.2021) (in Russian).
  3. Trenazher osanki. Upright go 2 [elektronnyy resurs] – Rezhim dostupa: https://kickgoods.ru/products/upright-go-2-posture-trainer?sphrase_id=25878 (data obrashcheniya 01.07.2021) (in Russian).
  4. Umnaya podushka Darma [elektronnyy resurs] – Rezhim dostupa: https://tehnobzor.ru/stati/smart-podushka-darma/ (data obrashcheniya 01.07.2021) (in Russian).
  5. Nosimoye ustroystvo dlya ispravleniya osanki Alex. [elektronnyy resurs] – Rezhim dostupa: https://vc.ru/flood/23816-alex (data obrashcheniya 01.07.2021) (in Russian).
  6. Tikhonenkova O.V., Tsurkov S.A., Sergeyev T.V., Danilova A.S. Sistema opredeleniya polozheniya. dvizheniy i naklonov go-lovy cheloveka dlya ortopedii. Volnovaya elektronika i infokommunikatsionnyye sistemy: XXIV Mezhdunar. nauch. konf. (SPb. 31 maya – 4 iyunya 2021 g.): Cb. statey: v 3-kh ch. 2021. Ch. 1. SPb.: GUAP. S. 300–306. (in Russian).
  7. Musha Y. Oscillator based surface acoustic wave gyroscopes. 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE. 2016. P. 557–560.
  8. Nevralgiya sheynogo otdela: simptomy i metody lecheniya [Elektronnyy resurs] – Rezhim dostupa: https://nervovnet.com/nevralgiya-shejnogo-otdela-03/ (data obrashcheniya 02.08.2021). (in Russian).
  9. Belous A.N., Rybkin. S.V. Algoritmy funktsionirovaniya i klassifikatsiya sistem zakhvata dvizheniya. Mezhdunarodnyy studencheskiy nauchnyy vestnik. Kaluzhskiy filial FGBOU VO «Moskovskiy gosudarstvennyy tekhnicheskiy universitet im. N.E. Baumana (natsionalnyy issledovatelskiy universitet)». 2019. № 2. S. 9. (in Russian).
  10. Karmadonov V. Yu. Metody otslezhivaniya polozheniya v virtualnoy realnosti. Academy. 2019. №12 (51). S. 19–22. (in Russian).
  11. Vorontsova O.I. Baranets M.S. Issledovaniye dinamiki dvizheniy golovy i tsentra davleniya cheloveka v osnovnoy stoyke s primeneniyem tekhnologii motion capture. VNMT. 2016. № 2. C. 120–125. (in Russian).
  12. Shchekoldin A.I., Dema N.Yu., Shevyakov A.D., Kolyubin S.A. Otslezhivaniye i klassifikatsiya dvizheniya golovy po dannym nashlemnogo inertsialnogo izmeritelnogo modulya. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy. mekhaniki i optiki. 2017. № 5. S. 798–804. (in Russian).
  13. Danilova A.S. Issledovaniye sistem monitoringa polozheniya sheynogo otdela pozvonochnika. Radiotekhnicheskiye. opticheskiye i biotekhnicheskiye sistemy. Ustroystva i metody obrabotki informatsii: Vtoraya Vseros. Nauch. konf. (14-22 aprelya 2021 g.): Sb. dokl. SPb.: GUAP. 2021. S. 135–137. (in Russian).
  14. Voinea G., Butnariu S., Morgan G. Measurement and Geometric Modelling of Human Spine Posture for Medical Rehabilitation Purposes Using a Wearable Monitoring System Based on Inertial Sensors. Sensors. 2017. V. 17(1). P. 3.
  15. Lo Presti D., Carneval A., D’Abbraccio J. et al. A Multi-Parametric Wearable System to Monitor Neck Movements and Respiratory Frequency of Computer Workers. Sensors. 2020. V. 20(2). P. 536.
  16. Danilova A.S. Tikhonenkova O.V., Sergeev T.V. Research Of Systems For Monitoring The Position Of The Cervical Spine. Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) Yekaterinburg, Russia 13-14 May 2021.
    P. 12–15.
  17. Patent № RU2127547C1. Ustroystvo dlya otsenki operatorskoy deyatelnosti. V.V. Bonch-Bruyevich (in Russian).
  18. Gayniyarov I.M., Obabkov I.N., Khlebnikov N.A. Metod zakhvata dvizheniy kak sredstvo estestvennogo interfeysa. Uralskiy federalnyy universitet imeni pervogo Prezidenta Rossii B.N. Eltsina. 2017. S. 193–196. (in Russian).
  19. Diers Biomedical Solutions [электронный ресурс] – Режим доступа: https://diers.eu/ru/ (data obrashcheniya 01.07.2021)
  20. Meditsinskiye topograficheskiye sistemy [elektronnyy resurs] – Rezhim dostupa: http://www.metos.org/ (data obrashcheniya 01.07.2021) (in Russian).
  21. Liu K, Zhang W, Chen W, Li K. The development of micro-gyroscope technology. Micromech. Microeng. 2009. V. 19. P. 113001.
  22. Khabilekt. Innovatsionnyye meditsinskiye sistemy. [elektronnyy resurs] – Rezhim dostupa: https://habilect.com/ (data obrashcheniya 01.08.2021) (in Russian).
Date of receipt: 26.11.2021
Approved after review: 30.11.2021
Accepted for publication: 25.12.2021