N.V. Kalmykov1, A.R. Alexandrov2, P.G. Ryazantsev3, I.A. Kudashov4, S.I. Shchukin5, I.V. Reshetov6
1–5 Bauman Moscow State Technical University (Moscow, Russia)
6 Plastic and Reconstructive Surgery and Radiology, I.M. Sechenov First Moscow State Medical University
The treatment of locally advanced tumors of the head and neck presents serious difficulties due to the difficulty of localizing growths, namely the proximity to vital organs and systems of the body (brain, large blood vessels) and the small size of the areas of intervention limits the choice of treatment methods. So, the development of helper methods and hardware of intraoperative visualization of blood vessels is relevant. So, the development of auxiliary methods and hardware means of intraoperative blood vessel imaging for objective assessment of adequacy of blood supply and differentiated recognition of anatomical structures is especially relevant in biomedical optics.
The aim of the work is to create an experimental setup for the development, testing and modification of the algorithms for improving the quality of the image of blood vessels against the background of surrounding tissues by optical method.
The article is devoted to technological and program features of developing and creating an experimental setup for intraoperative imaging. Clinical problem of the necessity of vessel imaging has been established. Current state of intraoperative vessel imaging has been analyzed. Structure of the setup has been determined. The requirements for parts of the setup have been formulated. Usage of the chlorophyll as a new liquid for blood substitution has been experimentally justified. A MATLAB-based model for quality evaluation of functions of the setup has been developed.
The experimental results obtained in the article are of great practical importance for the development of a biotechnological system for intraoperative vessel imaging.
Kalmykov N.V., Alexandrov A.R., Ryazantsev P.G., Kudashov I.A., Shchukin S.I., Reshetov I.V. Development of an experimental setup for intraoperative angiography system. Biomedicine Radioengineering. 2021. V. 24. № 5. P. 30–40. DOI: 10.18127/j15604136-202105-04 (in Russian)
- srednej i verhnej zon lica/ Opuholi golovy i shei: materialy peterburgskogo onkologicheskogo foruma «Belye Nochi». Sankt-Peterburg. 2015. T. 5. № 2. S. 55–66 (in Russian).
- Paches A.I. Opuholi golovy i shei. M.: Medicina. 1983. 416 s. (in Russian).
- Reshetov I.V. Rekonstruktivnaya i plasticheskaya hirurgiya opuholej golovy i shei/ Prakticheskaya onkologiya. 2003. T. 4.
- № 1. S. 9–14 (in Russian).
- Kusano M., Kokudo N., Toi M., Kaibori M. ICG Fluorescence Imaging and Navigation Surgery. Tokyo: Springer Japan. Inc. 2016. P. 474.
- Grachev P.V., Abdulvapova Z.N., Linkov K.G., Galstyan G.R., Loschenov V.B. Near-infrared fluorescence imaging methods to evaluate blood flow state in the skin lesions. SPIE Proceedings. 2018. P. 106771K.
- Holm C. Clinical Applications of ICG Fluorescence Imaging in Plastic and Reconstructive Surgery/ The Open Surgical Oncology Journal. 2010. V. 2. P. 37–47.
- Shcherbachev A.V., Bychkov E.A., Kudashov I.A., Shchukin S.I. Klyuchevye osobennosti sistemy vizualizacii perifericheskih ven/ Biomedicinskaya radioelektronika. 2018. № 10. S. 31–36 (in Russian).
- Taranov A.A., Kolpakov A.V., Spiridonov I.N. Vizualizaciya podkozhnogo krovenosnogo rusla v blizhnej infrakrasnoj oblasti spektra/ Medicinskaya tekhnika. 2011. № 4. S. 1–5 (in Russian).
- Urbanavisius L., Pattyn P., de Putte D.V., Venskutonis D. How to assess intestinal viability during surgery: A review of techniques. World J Gastrointest Surg. 2011. V. 3(5). P. 59–69.
- Tuchin V.V. Optika biologicheskih tkanej. Metody rasseyaniya sveta v medicinskoj diagnostike. M.: Fizmatlit. 2013. 812 s. (in Russian).
- Meinke M., Muller G., Helfmann J., Friebel M. Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range. Journal of Biomedical Optics. 2007. V. 12. № 1. P. 014024–1.
- Molar extinction coefficients of oxy and deoxyhemoglobin compiled by Scott Prahl. URL: http://omlc.ogi.edu/spectra/hemoglobin (data obrashcheniya: 20.04.2021)
- Safonova L.P. Spektrofotometriya v funkcional'noj diagnostike. M.: Izd-vo MGTU im. N.E. Baumana. 2005. 67 s. (in Russian).
- Brian W. Pogue., Michael S. Patterson. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. Journal of Biomedical Optics. 2006. V. 11. № 4. P. 79–83.
- GOST 3399-76. Trubki medicinskie rezinovye. Tekhnicheskie usloviya. M.: Izdatel'stvo standartov. 1994. 22 s. (in Russian).
- Liquid chlorophyll. URL: https://www.nowfoods.com/supplements/chlorophyll -liquid.html (data obrashcheniya: 08.02.2021).
- Zmievskoj G.N. Kobelev A.V. Spektral'nyj kompleks tipa KSVU-23 v biomedicinskih issledovaniyah / red.: I.N. Spiridonov, G.N. Zmievskoj. M.: Izd-vo MGTU im. N.E. Baumana. 2011. 24 s. (in Russian).
- ELP-USBFHD05MT-KL36IR. URL: http://ozali.ru/i/32991611812.html (data obrashcheniya: 02.04.2021).
- IEC/TR 62251:2003. Multimedia systems and equipment – Quality assessment – Audio-video communication systems. 2003. P. 40.
- Gonzalez R.S., Woods R.E. Digital Image Processing. New Jercy Prentice Hall. 2002. P. 954.
- Bombelli ZH. Kachestvo video v sistemah s kommutaciej potokov/ Tele-Sputnik. 2005. T. 120. № 10. S. 58–64 (in Russian).
- Zhuravel' I.M. Kratkij kurs teorii cifrovoj obrabotki izobrazhenij [Elektronnyj resurs]. URL: https://hub.exponenta.ru/post/kratkiy-kursteorii-obrabotki-izobrazheniy734. (data obrashcheniya: 13.02.2021).
- Korovin Ya.S., Hisamutdinov M.V. Metod polucheniya nezashumlennogo izobrazheniya na osnove obrabotki videoposledovatel'nosti/ Komp'yuternaya optika. 2014. T. 38. № 1. S. 112–117 (in Russian).
- Sheluhin O.I., Ivanov YU.A. Ocenka kachestva peredachi potokovogo video v telekommunikacionnyh setyah s pomoshch'yu programmno-apparatnyh sredstv/ Elektrotekhnicheskie i informacionnye kompleksy i sistemy. 2009. № 4. S. 48–56 (in Russian).