Journal Biomedical Radioelectronics №4 for 2021 г.
Article in number:
Formation of initial projection data in reflection tomography in the implementation of technical vision
Type of article: scientific article
DOI: 10.18127/j15604136-202104-08
UDC: 621.396.96; 519.21
Authors:

A.A. Zhilnikov1, T.A. Zhilnikov2, V.I. Zhulev3

1,2 Academy of Law and Management of the Federal Penitentiary Service of Russia (Ryazan, Russia)

3 Ryazan State Radio Engineering University n. a. akad. V.F. Utkin (Ryazan, Russia)

Abstract:

The known principles of active monostatic radar are based on the effect of radio wave scattering on objects located on the path of the probing signal, and the subsequent registration of a part of the wave reflected in the direction of the emitter. However, within the framework of this study, it is of interest to register objects that do not return a reflected radio echo towards the emitter. When fixing the position of an object, it is assumed that there is a possible absence of an echo signal characteristic of classical active radar with a passive response. The absence of a characteristic echo signal does not exclude its return as a result of repeated reflection inside the scene, including along other routes and from other objects.

Purpose – within the framework of the implementation of technical vision in the course of tomographic observation of a complex radar scene that solves the problems of multidimensional reconstruction, a stochastic model based on the principles of tomography describing the subject area of a complex radar scene is developed.

In the indicated relevance of the development of methods for radar detection of hidden objects inaccessible for registration by classical methods, a variant of using tomographic observation of a complex radar scene is proposed. In connection with the admitted lowangle and the emerging problems of an unambiguous deterministic definition, a description of the subject area of the scene from a stochastic position is proposed.

In the proposed tomographic method, in conditions of limited initial data, when a deterministic approach to the reconstruction of the radar scene is not possible, an acceptable solution is sought in the stochastic description. At a given value by sampling the space, determined by the hexagonal lattice cell, the scene reconstruction is carried out by selecting and analyzing the echo signal trajectories from the possible set of proposed ones. The decision on the choice of one or another proposed trajectory and its transfer to the category of a possible solution is carried out on the basis of a preliminary calculation of the characteristics of the stochastic description.ф

Pages: 58-67
For citation

Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Formation of initial projection data in reflection tomography in the implementation of technical vision. Biomedicine Radioengineering. 2021. V. 24. № 4. P. 58–67. DOI: 10.18127/j15604136-202104-08 (in Russian)

References
  1. Bogomolov A.F. Osnovy radiolokacii. M.: Sov. radio. 1954. 303 s. (in Russian).
  2. Bakut P.A., Bol'shakov I.A., Tartakovskij G.P. i dr. Voprosy statisticheskoj teorii radiolokacii. T. 1. M.: Sov. radio. 1963. 421 s. (in Russian).
  3. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Ispol'zovanie tekhnicheskogo zreniya pri reshenii radiolokacionnyh zadach. Biomedicinskaya radioelektronika. 2020. T. 23. № 3. S. 26–36. DOI: 10.18127/j15604136-202003-04 (in Russian).
  4. Borzov A.B., Bystrov R.P., Men'shikov V.L. i dr. Vzaimodejstvie elektromagnitnogo polya i fizicheskih ob"ektov v probleme funkcionirovaniya radiolokacionnyh sistem v usloviyah estestvennyh i prednamerennyh pomekh. Zhurnal radioelektroniki. 2015. № 8. S. 1–36 (in Russian).
  5. Tihonov A.N., Arsenin V.Ya., Timonov A.A. Matematicheskie zadachi komp'yuternoj tomografii. M.: Nauka. 1987. 160 s. (in Russian).
  6. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Razvitie ob"emnoj tomografii dlya opredeleniya vektornyh fizicheskih velichin. Inzhenernaya fizika. 2019. № 9. S. 10–15. DOI: 10.25791/infizik.09.2019.834 (in Russian).
  7. Hermen G. Vosstanovlenie izobrazhenij po proekciyam: Osnovy rekonstruktivnoj tomografii. M.: Mir. 1983. 352 s. (in Russian).
  8. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Finitnaya tomograficheskaya rekonstrukciya. Biomedicinskaya radioelektronika. 2019. T. 22. № 4. S. 31–37. DOI: 10.18127/j15604136-201904-05 (in Russian).
  9. Voprosy perspektivnoj radiolokacii. Kollektivnaya monografiya / Pod red. A.V. Sokolova. M.: Radiotekhnika. 2003. 512 s. (in Russian).
  10. Kononov A.F. Primenenie tomograficheskih metodov dlya polucheniya radiolokacionnyh izobrazhenij ob"ektov s pomoshch'yu sverhshirokopolosnyh signalov. Zarubezhnaya radioelektronika. 1991. № 1. S. 35–49 (in Russian).
  11. Yakubov V.P., Sklyarchik K.G., Pinchuk R.V. i dr. Radiovolnovaya tomografiya skrytyh ob"ektov dlya sistem bezopasnosti. Izv. vuzov. Ser. Fizika. 2008. T. 51. № 10. S. 63–80 (in Russian).
  12. Yakubov V.P., Shipilov S.E., Satarov R.N., Yurchenko A.V. Distancionnaya sverhshirokopolosnaya tomografiya nelinejnyh radioelektronnyh elementov. Zhurnal tekhnicheskoj fiziki. 2015. T. 85. № 2. S. 122–125 (in Russian).
  13. Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissen-schaften, Bande 29, Leipzig. 1917. P. 262–277.
  14. Troickij I.N. Komp'yuternaya tomografiya. M.: Znanie. 1988. 64 c. (in Russian).
  15. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Model' informacionnogo kanala dlya sluchaya mnogokratnyh otrazhenij pri rekonstrukcii slozhnyh radiolokacionnyh scen. Aviakosmicheskoe priborostroenie. 2020. № 2. S. 3–12. DOI: 10.25791/aviakosmos.02.2020.1140 (in Russian).
Date of receipt: 22.04.2021
Approved after review: 22.05.2021
Accepted for publication: 23.06.2021