350 rub
Journal Biomedical Radioelectronics №3 for 2020 г.
Article in number:
Using technical vision when solving radar problems
DOI: 10.18127/j15604136-202003-04
UDC: 621.396.969;
Authors:

A.A. Zhilnikov – Ph.D. (Eng.), Lecturer, Department of Logistics of the Penitentiary System 

of the Academy of the Federal Penitentiary Service of Russia (Ryazan)

E-mail: ark9876@mail.ru

T.A. Zhilnikov – Ph.D. (Eng.), Head of the Department of Mathematics and Information Technology 

of Management of the Academy of the Federal Penitentiary Service of Russia (Ryazan)

E-mail: quadrus02@mail.ru

V.I. Zhulev – Dr. Sc. (Eng.), Professor, Head of Department «Information-Measuring and Biomedical Engineering»

Ryazan State Radio Engineering University n.a. acad. V.F. Utkin; Laureate of the Ryazan Region on Science and Technology and the Silver Medal acad. V.F. Utkin, Honored Worker of Higher School of Russian Federation (RF)

E-mail: zhulev.v.i@rsreu.ru

Abstract:

Statement of the problem. Today, computer vision is widely used in the field of medical image analysis (technical vision). An important branch of computer vision is the construction of multi-dimensional models of the space-enclosing object based on images with a dimension one less than the space-enclosing object. For example, two-dimensional models are constructed from onedimensional images, respectively; three-dimensional models are constructed from two-dimensional images. In this respect, the tasks facing vision are similar to tomographic ones. The difference is that tomography is based on a strict solution of the main integral Radon equation, which requires a complete group of initial projection images obtained for different angles. Computer vision, as a rule, is limited in the required number of angles and is not able to possess a complete group of source images, and therefore can only adhere to the principles of tomography. Due to the arising conditions for computer vision, it is not possible to talk about a strict solution, and are limited only to the construction of the model. This article discusses the possibility of increasing the information content of radar observation of a complex scene, implemented for a monostatic version, when the position of the receiver is combined with the emitter.

Aim of the work – as part of the implementation of one of the directions of the ideology of computer vision, which solves the problems of reconstruction of multi-dimensionality, the development of a localization model based on the principles of tomography, hidden and scattering objects of a complex radar scene.

Results. the possibility of increasing the information content of radar observations of complex scenes, which is implemented for the case when the position of the receiver aligned with the emitter achieved by the introduction shirokorechenskiy registration response and subsequent application of tomographic principles of numerical reconstruction of the trajectories obtained owing to the effect of multiple reflections within the scene.

Practical significance. Ability to locate hidden and scattering objects.

Pages: 26-36
References
  1. Klette R. Komp'yuternoe zrenie. Teoriya i algoritmy: Per. s angl. A.A. Slinkin. M.: DMK Press. 2019. 506 s. (In Russian).
  2. Pavlidis T. Algorithms for Graphics and Image Processing – Rockville: Computer Science Press, Inc. 1982. 430 p.
  3. Tihonov A.N., Arsenin V.Ya., Timonov A.A. Matematicheskie zadachi komp'yuternoj tomografii. M.: Nauka. 1987. 160 s. (In Russian).
  4. Troickij I.N. Komp'yuternaya tomografiya. M.: Znanie. 1988. 64 c. (In Russian).
  5. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Finitnaya tomograficheskaya rekonstrukciya. Biomedicinskaya radioelektronika. 2019. T. 22. № 4. S. 31–37. DOI 10.18127/j15604136-201904-05. (In Russian).
  6. Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissen-schaften, Bande 29. Leipzig. 1917. P. 262–277.
  7. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Razvitie ob"emnoj tomografii dlya opredeleniya vektornyh fizicheskih velichin. Inzhenernaya fizika. 2019. № 9. S. 10–15 (In Russian).
  8. Voprosy perspektivnoj radiolokacii: Kollektivnaya monografiya. Pod red. A.V. Sokolova. M.: Radiotekhnika. 2003. 512 s. (In Russian).
  9. Shirman Ya.D. i dr. Teoreticheskie osnovy radiolokacii: Ucheb. posobie. M.: Sov. radio. 1970. 560 s. (In Russian).
  10. Borzov A.B., Bystrov R.P., Men'shikov V.L., Pozhidaev V.N., Suchkov V.B., Cherepenin V.A. Vzaimodejstvie elektromagnitnogo polya i fizicheskih ob"ektov v probleme funkcionirovaniya radiolokacionnyh sistem v usloviyah estestvennyh i prednamerennyh pomekh. Zhurnal radioelektroniki. 2015. № 8. 32 s. (In Russian).
  11. Zhil'nikov A.A., Zhil'nikov T.A., Zhulev V.I. Model' informacionnogo kanala dlya sluchaya mnogokratnyh otrazhenij pri rekonstrukcii slozhnyh radiolokacionnyh scen. Aviakosmicheskoe priborostroenie. 2020. № 2. S. 3–12 (In Russian).
  12. Bogomolov A.F. Osnovy radiolokacii. M.: Sov. radio. 1954. 303 s. (In Russian).
Date of receipt: 26 мая 2020 г.