350 rub
Journal Biomedical Radioelectronics №2 for 2020 г.
Article in number:
Development of an autonomous artificial life support system for patients with chronic renal failure
DOI: 10.18127/j15604136-202002-08
UDC: 615.47
Authors:

N.A. Bazaev – Ph.D. (Eng.), Senior Research Scientist, I.M. Sechenov First Moscow State Medical University;

Senior Lecturer, Biomedical Systems Institute, National Research University of Electronic Technology (Moscow)

E-mail: bazaev-na@ya.ru

Abstract:

Statement of the problem. Development of wearable artificial kidney (WAK) is one of the most promising directions of research in the field of renal replacement therapy. For almost 40 years, several different science groups were developing various prototypes of such device, but none of them became market-available.

Despite the considerable progress in science and technology, there are only two prototypes of lightweight WAK (less than 5 kg) are on the stage of clinical trials: AWAK (AWAK Technologies, Singapore) and WAK (Blood Purification Technologies, USA), though there are more than ten prototypes in the world [1-4].

WAK has potential to overcome a number of drawbacks of the existing dialysis machines, such as high dialysate usage (>150 L per procedure), large dimensions and mass (> 80 kg), low biocompatibility due to high intensity of procedure. 

Aim of the work – to critically overview of the general problems associated with WAK development. These problems are formulated as the result of more than 8 years of experience in development and preclinical trials of the first Russian prototype of WAK ("Renart-PD"). The developed apparatus is equal or better in its characteristics to foreign analogues (0.8 g/h urea removal rate, 3.5 kg device mass) and is ready to undergo clinical trials. Results: The work highlights key aspects of:

  • WAK functioning and basic principles of operation; 
  • Dialysate regeneration: uremic toxins to be removed and their mass removal rate, ionic composition stability, dialysate regeneration methods with their cons and pros; 
  • WAK composition: controlling and actuating units’ functions, characteristics, problems and their solutions;
  • WAK characteristics: weight, dimensions, ergonomics, efficiency;
  • WAK usage in economic terms: is it cost-effective and offers enough advantages over conventional renal replacement therapy options. 

Experience of foreign teams (AWAK, Nanodialysis etc.) in this field of research and development are also were taken into consideration, especially from science groups of V. Gura, A. Davenport, M. Wester.

Practical significance. The article reflects the designing process of wearable equipment for blood purification in terms of system analysis and biotechnical system that include elements of different nature, interaction among which require application of different methods for optimization and regulation, which helps during initial designing of such systems.

Pages: 57-67
References
  1. Van Gelder M.K., Mihaila S.M., Jansen J., Wester M., Verhaar M.C., Joles J.A., Stamatialis D., Masereeuw R., Gerritsen K.G.F. From portable dialysis to a bioengineered kidney. Expert Review of Medical Devices 2018. V. 15 № 5 P. 323–336.
  2. Bazaev N.A., Grinval’d V.M., Zhilo N.M., Putrya B.M. Design Concepts for Wearable Artificial Kidney. Biomedical Engineering 2018. V. 51 № 6 P. 394–400.
  3. Ronco C., Davenport A., Gura V. Los dispositivos portátiles miniaturizados el futuro del riñón artificial. Nefrologia. 2011. V. 31. № 1. P. 9–16.
  4. Lee C.J. Portable and Wearable Dialysis Devices for the Treatment of Patients with End-Stage Renal Disease. Hemodialysis Access. Cham: Springer Interna-tional Publishing. 2017. 353 p.
  5. Schroder C.H. Optimal peritoneal dialysis: choice of volume and solution. Nephrology Dialysis Transplantation. 2004. V. 19. № 4. P. 782–784.
  6. Ahrenholz P., Winkler R.E., Zendeh-Zartochti D. The Role of the Dialysate Flow Rate in Haemodialysis. Updates in Hemodialysis. Ed. Hiromichi S. London: InTechOpen. 2015. 294 p.
  7. Bazaev N.A., Grinval'd V.M., Putrya B.M., Selishchev S.V. Sovremennye metody i sredstva regeneracii dializiruyushchego rastvora. Biotekhnosfera. 2013. T. 3 № 27. S. 2–6 (In Russian).
  8. Wester M., Simonis F., Lachkar N., Wodzig W.K., Meuwissen F.J., Kooman J.P., Boer W.H., Joles J.A., Gerritsen K.G. Removal of urea in a wearable dialysis device: A reappraisal of electro-oxidation. Artificial Organs. 2014. V. 38. № 12. P. 998–1006.
  9. Bazaev N.A., Dorofeeva N.I., Grinval’d V.M., Putrya B.M., Zhilo N.M. Urea electrochemical oxidation on diamond electrodes. Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, ElConRus 2017. 2017. P. 17–19.
  10. Bazaev N.A., Putrya B.M., Strel'cov E.V. Almaznye i platinovye elektrody dlya elektrohimicheskogo okisleniya mocheviny. Biomedicinskaya radioelektronika. 2018. T. 6. S. 18–21 (In Russian).
  11. Grinval’d V.M., Khaitlin A.I., Éventov V.L., Maksimenko V.A., Noskov S.G., Yashkin V.V., Yakovleva A.A., Savrikov E.V. The ADR-01 dialysis device with di-alyzate regeneration: Design and results of preliminary testing. Biomedical Engineering. 1993. V. 27 № 3. P. 151–156.
  12. Blumenkrantz M.J., Gordon A., Roberts M., Lewin A.J., Peeker E.A., Moran J.K., Coburn J.W., Maxwell M.H. Applications of the Redy® Sorbent System to Hemodialysis and Peritoneal Dialysis. Artificial Organs. 1979. V. 3. № 3. P. 230–236.
  13. AWAK Technologies. AWAK Technologies [Elektronnyj resurs]. URL: http://www.awak.com (accessed: 30.11.2019).
  14. Armignacco P., Lorenzin A., Neri M., Nalesso F., Garzotto F., Ronco C. Wearable Devices for Blood Purification: Principles, Miniaturization, and Technical Challenges. Seminars in Dialysis. 2015. V. 28. № 2. P. 125–130.
  15. Bazaev N.A., Putrya B.M., Zhilo N.M. Wearable artificial kidney. Sechenov International Biomedical Summit 2018. 2018. P. 2020.
  16. Davenport A., Gura V., Ronco C., Beizai M., Ezon C., Rambod E. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet. 2007. V. 370. № 9604. P. 2005–2010.
  17. Gura V., Rivara M.B., Bieber S., Munshi R., Smith N.C., Linke L., Kundzins J., Beizai M., Ezon C., Kessler L., Himmelfarb J. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight – 2016. V. 1. № 8. P. e86397.
  18. Gura V., Macy A.S., Beizai M., Ezon C., Golper T.A. Technical breakthroughs in the wearable artificial kidney (WAK). Clinical Journal of the American So-ciety of Nephrology. 2009. V. 4. № 9. P. 1441–1448.
  19. Kim J.C., Garzotto F., Nalesso F., Cruz D., Kim J.H., Kang E., Kim H.C., Ronco C. A wearable artificial kidney: Technical requirements and potential solu-tions. Expert Review of Medical Devices. 2011. V. 8. № 5. P. 567–579.
  20. Ronco C., Fecondini L. The vicenza wearable artificial kidney for peritoneal dialysis (ViWAK PD). Blood Purification. 2007. V. 25. № 4. P. 383–388.
  21. Nanodialysis Miniature Dialysis System brochure [Elektronnyj resurs]. URL: http://www.nanodialysis.nl/media/Nanodialysis_Miniature_Dialysis_System_Brochure_2015.pdf (accessed: 27.01.2020).
  22. Jiang C., Lo W.K. Trend of peritoneal transport and impact on patient survival: A 10-year follow-up cohort study. Clinical Nephrology. 2018. V. 89.  № 5. P. 349–357.
  23. The EUTox Work Group [Elektronnyj resurs]. URL: http://www.uremic-toxins.org/.
  24. Zhang L., Wan L., Chang N., Liu J., Duan C., Zhou Q., Li X., Wang X. Removal of phosphate from water by activated carbon fiber loaded with lanthanum ox-ide. Journal of Hazardous Materials. 2011. V. 190. № 1–3. P. 848–855.
  25. Cheung A.K., Rocco M. V., Yan G., Leypoldt J.K., Levin N.W., Greene T., Agodoa L., Bailey J., Beck G.J., Clark W., Levey A.S., Ornt D.B., Schulman G., Schwab S., Teehan B., Eknoyan G. Serum β-2 microglobulin levels predict mortality in dialysis patients: Results of the HEMO study. Journal of the American Society of Neph-rology. 2006. V. 17. № 2. P. 546–555.
  26. Einhorn L.M., Zhan M., Hsu V.D., Walker L.D., Moen M.F., Seliger S.L., Weir M.R., Fink J.C. The frequency of hyperkalemia and its significance in chronic kidney disease. Archives of Internal Medicine – 2009. V. 169. № 12. P.1156–1162.
  27. Agar J.W.M. Review: Understanding sorbent dialysis systems. Nephrology. 2010. V. 15. № 4. P. 406–411.
  28. Sridharan S., Vilar E., Berdeprado J., Farrington K. Energy metabolism, body composition, and urea generation rate in hemodialysis patients. Hemodialy-sis International. 2013. V. 17. № 4. P. 502–509.
  29. Junge W., Wilke B., Halabi A., Klein G. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzy-matic and a modified Jaffé method. Clinica Chimica Acta. 2004. V. 344. № 1–2. P. 137–148.
  30. Perez-Ruiz F., Calabozo M., Erauskin G.G., Ruibal A., Herrero-Beites A.M. Renal underexcretion of uric acid is present in patients with apparent high uri-nary uric acid output. Arthritis & Rheumatism. 2002. V. 47. № 6. P. 610–613.
  31. Pham N.M., Recht N.S., Hostetter T.H., Meyer T.W. Removal of the protein-bound solutes indican and p-cresol sulfate by peritoneal dialysis. Clinical Journal of the American Society of Nephrology. 2008. V. 3. № 1. P. 85–90.
  32. Prasad N., Bhadauria D. Renal phosphate handling: Physiology. Indian Journal of Endocrinology and Metabolism. 2013. V. 17. № 4. P. 620.
  33. O’Donnell M., Mente A., Rangarajan S., McQueen M. J., Wang X., Liu L., Rosengren A. Urinary Sodium and Potassium Excretion, Mortality, and Cardiovas-cular Events. New England Journal of Medicine. 2014. T. 371. № 13. P. 1267–1267.
  34. Mumtaz A., Anees M., Bilal M., Ibrahim M. Beta-2 microglobulin levels in hemodialysis patients. Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia. 2010. V. 21. № 4. P. 701–706.
  35. Deepa C., Muralidhar K. Renal replacement therapy in ICU. Journal of Anaesthesiology Clinical Pharmacology. 2012. V. 28. № 3. P. 386–396.
  36. Chaudhary K., Sangha H., Khanna R. Peritoneal dialysis first: Rationale. Clinical Journal of the American Society of Nephrology. 2011. V. 6. № 2.  P. 447–456.
  37. Ershov Y.A., Khachaturyan M.A., Slonskaya T.K., Murashko M.A. A Control and Regulation System for Extracorporeal Detoxification of Blood Plasma. Bi-omedical Engineering. 2019. V. 53. № 1. P. 32–35.
  38. Grinval’d V.M. A Biotechnical System for Automated Peritoneal Dialysis with Regeneration. Biomedical Engineering. 2019. V. 53. № 3. P. 153–157.
Date of receipt: 23 марта 2020 г.