350 rub
Journal Biomedical Radioelectronics №1 for 2020 г.
Article in number:
Reduction of regenerative activity of planarians in a low-intensity radio frequency field due to disruption of proliferative activity and cellular metabolism
DOI: 10.18127/j15604136-202001-06
UDC: 577.3:537.531
Authors:

D.V. Uskalova – Ph.D. (Biol.), Junior Research Scientist, Department of Biotechnology, 

Obninsk Institute for Nuclear Power Engineering 

E-mail: uskalovad@mail.ru

Е.I. Sarapultseva – Dr. Sc. (Biol.), Professor, Department of Biotechnology, Obninsk Institute for Nuclear Power

Engineering; A. Tsyb Medical Radiological Research Center – Branch of the National Medical 

Research Radiological Center of the Ministry of Health of the Russian Federation (Obninsk); National Research  Nuclear University “MEPhI” (Moscow)

E-mail: helen-bio@yandex.ru

Abstract:

Problem statement. The mechanisms of biological action of irradiation in a low-intensity electromagnetic field are poorly understood. The key role of stem cells in maintaining homeostasis and tissue repair is discussed.

The aim of the work – to identify patterns of short-and long-term effects of low-intensity radio frequency electromagnetic fields on the regeneration of planarians, as well as the proliferative and metabolic activity of their cells in model experiments.

Results. On the fourth day after radiofrequency exposure, the regenerative activity of D. tigrina decreased by 2 times. The effect was leveled by 7 days. Cytometric analysis of proliferative activity was performed on S. mediterranea. The proliferation process was reduced by 1.5 times. The MTT index decreased by 1.5 times. It integrally reflects the ratio of living and dead cells, their metabolic activity, impaired dehydrogenase activity, and increased levels of free radicals.

Practical significance. Short-term violation of the regenerative activity of irradiated planarians is associated with a decrease in the proliferative and metabolic activity of their cells. The regeneration process is restored a week after exposure

Pages: 60-66
References
  1. Baguna J. The planarian neoblast: the rambling history of its origin and some current black boxes. Int. J. Dev. Biol. 2012. V. 56. P. 19–37. 
  2. Krishna S., Palakodeti D., Solana J. Post-transcriptional regulation in planarian stem cells. Semin Cell Dev Biol. 2018. PII: S1084-9521(17)30204-5.
  3. Rink J.C. Stem cell systems and regeneration in planarian. Dev. Genes. Evol. 2013. V. 223(1–2). P. 67–84.
  4. Fumagalli M.R., Zapperi S., La Porta C.A.M. Regeneration in distantly related species: common strategies and pathways. NPJ Syst Biol Appl. 2018. V. 4. P. 5. DOI: 10.1038/s41540-017-0042-z. eCollection 2018.
  5. Kenny N.J., de Goeij J.M., de Bakker D.M., Whalen C.G., Berezikov E., Riesgo A. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Mar. Genomics. 2018. V. 37. P. 135–147.
  6. Litovchenko A.V., Koz'min G.V., Ignatenko G.K., Sarapultseva E.I., Igolkina YU.V. Komplekt ustanovok dlya issledovaniya vliyaniya nizkointensivnyh elektromagnitnyh polej na zhivye organizmy. Biomedicinskaya radioelektronika. 2011. № 12. S. 15–19.
  7. SanPin 2.1.8/2.2.4.1190-03. Gigienicheskie trebovaniya k razmeshcheniyu i ekspluatacii sredstv suhoputnoj podvizhnoj radio-svyazi. M. 2003. 29 s.
  8. Tiras H.P., Aslanidi K.B. Test-sistema dlya neklinicheskogo issledovaniya medicinskoj i ekologicheskoj bezopasnosti na os-nove regeneracii planarij: Uchebno-metod. posobie. Pushchino: Pushchinskij gosudarstvennyj estestvenno-nauchnyj institut. 2013. 64 s.
  9. SHejman I.M., Tiras H.P., Balobanova E.F. Morfogeneticheskaya funkciya nejropeptidov. Fiziologicheskij zhurnal SSSR. 1989. № 75. S. 619–626.
  10. Ermakov A.M., Ermakova O.N., Kudravtsev A.A., Kreshchenko N.D. Study of planarian stemcell proliferation by means of flow cytom-etry. MolBiolRep. 2012. V. 39. P. 3073–3080. 
  11. Uskalova D.V. Vliyanie nizkointensivnogo radiochastotnogo izlucheniya na morfo-funkcional'nye pokazateli u prostejshih i bespozvonochnyh zhivotnyh. Diss. … kand. biol. nauk. Obninsk. 2018. 137 s.
  12. Tiras H.P., Aslanidi K.B. Dve populyacii plyuripotentnyh stvolovyh kletok u planarii Girardia tigrina. Biologicheskie membrany: ZHurnal membrannoj i kletochnoj biologii. 2015. T. 32. № 5–6. S. 421.
  13. Savina N.B., Uskalova D.V., Sarapultseva E.I. Ispol'zovanie MTT-testa dlya izucheniya otdalennyh effektov ostrogo γ-oblucheniya u rakoobraznyh Daphnia magna. Radiaciya i risk. 2018. T. 27. № 1. S. 86–93.
  14. Cancer Cell Culture. Methods and Protocols. Ed. I.A. Cree. Second ed. Springer New York Dordrecht Heidelberg London: Human Press. 2011. P. 237−244.
  15. Tiras H.P., Petrova O.N., Myakisheva S.N., Deev A.A., Aslanidi K.B. Minimizaciya pogreshnostej morfometrii regeneriru-yushchih planarij. Fundamental'nye issledovaniya. 2015. № 2–7. S. 1412–1416.
  16. Cowles M.W., Hubert A., Zayas R.M. A Lissencephaly-1 Homologue Is Essential for Mitotic Progression in the Planarian Schmidtea mediterranea. Developmental dynamics. 2012. V. 241. № 5. P. 901–910.
  17. Ermakov A.M., Ermakova O.N., Skavulyak A.N., Maevskij E.I. Issledovanie vozdejstviya nizkotemperaturnoj argonovoj plazmy na proliferaciyu stvolovyh kletok planarij. Biofizika. 2013. T. 14. S. 802–812.
  18. Wenemoser D., Lapan S.W., Wilkinson A.W., Bell G.W., Reddien P.W. A molecular wound response program associated with regenera-tion initiation in planarians. Genes Dev. 2012. V. 1. № 26(9). P. 988–1002.
  19. Harris K.D., Bartlett N.J., Lloyd V.K. Daphnia as an Emerging Epigenetic Model Organism. Genet. Res. Int. 2012. 147892.
Date of receipt: 2 октября 2019 г.