350 rub
Journal Biomedical Radioelectronics №6 for 2019 г.
Article in number:
Development of adaptive control system of artificial ventricles of the heart
Type of article: scientific article
DOI: 10.18127/j15604136-201906-04
UDC: 602.1
Authors:

A.V. Shcherbachev – Post-graduate Student, Department «Medical and Technical Information Technology» (BMT-2), Bauman Moscow State Technical University

E-mail: sa0211825@gmail.com

I.A. Kudashov – Ph.D. (Eng.), Associate Professor, Department «Medical and Technical Information Technology» (BMT-2), Bauman Moscow State Technical University

E-mail: KydashovV@mail.ru

S.I. Shchukin – Dr.Sc. (Eng.), Professor, Head of Department«Medical and Technical Information Technology» (BMT-2), Bauman Moscow State Technical University

E-mail: schookin@mx.bmstu.ru

G.P. Itkin – Dr.Sc. (Biol.), Professor, Head of the Laboratory of Biotechnical Systems,  FSBI «National Medical Research Center for Transplantology and Artificial Organs named after academician  V.I. Shumakov Ministry of Health of Russia» (Moscow)

E-mail: itkin@jcnet.ru

Abstract:

The main physiological function of the heart is to inject blood into the circulatory system. At the same time, one of the most important characteristics of the work of the heart is the regulation of cardiac output, determined by the stroke volume and heart rate.

Under normal conditions, the heart pumps 5-6 liters of blood in 1 minute, and with moderate load, cardiac output should double [1]. The developed biotechnical system, based on the information of the AHV volume, will control the AHV membrane movement included in the hydrodynamic stand simulating the vascular system. The AHV control unit should ensure the implementation of the Frank-Starling mechanism, i.e. regulation of the stroke emission depending on the AHV end-diastolic volume.

This mechanism is based on the direct linear dependence of the end-diastolic volume and the heart's stroke work.

To solve the problem of continuous determination of blood volume in AHV with a single reduction in the projected system, the volume measuring block of an AHV stroke emission is used.

The studies were carried out on an experimental hydrodynamic test bench, the scheme of which is given later in the work and showed the effectiveness of the chosen method of AHV measuring the volume and the proposed design.

Pages: 18-23
References
  1. Gajton A. Fiziologiya krovoobrashcheniya: Minutnyj ob"em serdca i ego regulyaciya: Per. s angl. N.P. Kosickoj / Pod obshch. red. G.I. Kosickogo. M.: Medicina, 1969. S. 472.
  2. Roger V.L. American Heart Association Subcommittee. Heart disease and stroke statistics – 2012 update // report from the American Heart Association. 2012. № 125. P. 2–220.
  3. Zabolevaemost' vsego naseleniya Rossii v 2011 g. (statisticheskie materialy). M.: Ministerstvo zdravoohraneniya Rossijskoj Federacii, Departament analiza, prognoza, razvitiya zdravoohraneniya i medicinskoj nauki, FGU Central'nyj nauchno-issledovatel'skij institut organizacii i informatizacii zdravoohraneniya Minzdrava. 2012. CH. 1, 3, 5.
  4. Tereshchenko S.N. i dr. Federal'nye klinicheskie rekomendacii po diagnostike i lecheniyu hronicheskoj i ostroj serdechnoj nedostatochnosti. M.: Ministerstvo zdravoohraneniya Rossijskoj Federacii. 2013. S. 52.
  5. Bogdanova YU.V., Gus'kov A.M. Osobennosti proektirovaniya ustrojstva iskusstvennogo zheludochka serdca: Obzor rabot // Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana 2014. № 3, S. 162–186.
  6. Safonova L.P., Seliverstov A.B. Izgotovlenie i issledovanie opticheskih harakteristik fantomov biologicheskih tkanej na osnove vodnyh gelej // Medicinskaya tekhnika. 2013. № 1. S. 1–6. 
  7. Zhorina L.V., G.N. Zmievskoy G.N., Solntceva A. Low-intensity optical irradiation: Thermographic study of the effects produced. Proceedings – 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, (USBEREIT) // IEEE Xplore, IEEE Catalog Number: CFP18P00-POD. 2018. P. 132–135.
  8. Kudashov I.A., Shchukin S.I. Al-Harosh MB. The study of needle electrode characteristics for venipuncture electrical impedance controlling system // IFMBE Proceedings (EMBEC & NBC). 2017. P. 350–353.
  9. Shcherbachev A.V., Bychkov E.A., Kudashov I.A., Volkov A.K. Research coaxial needle electrode characteristics for the automated vein puncture control system Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) // IEEE Xplore, IEEE Catalog Number: CFP18P00-POD. 2018. P 37–41.
  10. Malakhov A.I., Tikhomirov A.N., Shchukin S.I., Kudashov I.A., Kobelev A.V., Belenkov Yu.N., Shakaryants G.A., Kozhevnikova M.V., Kaplunova V.Yu. Electro-impedance methods for diagnosing heart activity // Kardiologiia. 2016. V. 56. P. 33–39.
  11. Al-Harosh M.B., Shchukin S.I. The Venous Occlusion Effect To Increase The Accuracy Of Electrical Impedance Peripheral Veins Detection // IFMBE Proceedings (EMBEC & NBC) 2017. Singapore; Springer. 2017. P. 538–541.
Date of receipt: 10 октября 2019 г.