A.N. Pavlov – Dr.Sc.(Phys.-Math.), Professor, Department of Medical equipment, Russian Medical Academy for Post-Graduate Education (Moscow)
E-mail: pan1943@mail.ru
The paper studied the state of water clusters in purified tap water (PTW) under the interaction of electromagnetic radiation (EMR) in the frequency range 100 – 1000 MHz. Interpretation of the results was based on two fractional models of the first fraction – clusters of related molecules (H2O)6 with the hexagonal structure of ice; second fraction – “ floating” unbound molecules H2O. Fractions are in unstable dynamic equilibrium. Resonance phenomena recorded at electromagnetic impact on the water, in the form of electromagnetic transmission peaks of the probe (PEP) and it appears at frequencies peculiar to a particular cluster. To clarity the mechanism of interaction of fractions in cluster rearrangement, the electromagnetic transmission spectrum (SET) were investigated of anolyte and catholyte received by the electrolyte from the source PTW. The analysis of SET showed that the frequency PEP 270 MHz and the level of electromagnetic losses for anolyte and catholyte matches. The mixing of anolyte and catholyte restores the initial electromagnetic losses, which indicates the cluster memory of initial water. The specificity of measurement of SET on the analyzer X1-55 is that recorded “instantaneous picture” of the spectral distribution of electromagnetic anomalies in the form of a PEP. As the frequency progresses, there is a transition from first anomaly to second one. If each maximum is responsible for a particular cluster, it is possible to consider the division of the water environment into separate clusters as independent and separate objects that make up a single system associated with free water molecules. When the processes taking place in a particular cluster do not chance the properties of other clusters is a feature of nonlinear systems. The stability and structure of the clusters are certainly different.
The most stable are the fractal clusters to which we can relate the cluster is manifested at a frequency of 270 MHz. This is confirmed by the reproducibility of the PEP during repeated measurements of SET. The lack of response to laser exposure with simultaneous measurement of SET and subsequent effect after hour pre-exposure to laser irradiation indicates the diffusive nature of the restructuring of the cluster. Measurement of SET at temperatures of 25°C and 42°C for the same water showed that 42°C, most PEP increase in amplitude compared to the PEP at 25°C. This is most clearly manifested in the “high-frequency” range above 400 MHz. In the same frequency range, the effect of laser radiation is more active, which can be explained by the thermally activated restructuring of clusters found in [4]. The effect in laser radiation on clusters shows both a decrease and a fascination with electromagnetic transmission. The specific effect is determined by: the frequency range, the degree of thermal activation, the number of hydrogen bond breaks, the size of the cluster, the nature of the charged of neutral molecules and impurities introduced into the voids of the cluster.
- Ling G. Fizicheskaya teoriya zhivoj kletki. Nezamechennaya revolyuciya. SPb.: Nauka. 2008. 375 s.
- Pavlov A.N. Fizicheskie osnovy energoinformacionnoj mediciny. M.: IRIAS. 2018. 154 s.
- Kuznecov A.N. Biofizika elektromagnitnyh vozdejstvij. M.: Energoatomizdat. 1994. 254 s.
- Pavlov A.N., Godik V.A., Novichkov S.A. i dr. Termoaktivacionnye stukturnye izmeneniya vody pri dejstvii elektromagnit-nogo izlucheniya v chastotnom diapazone 20–1000 MGc // Tekhnologiya zhivyh sistem. 2016. T. 13. №5. S. 50–55.
- Gotovskij M.YU., Perov S.YU., Belaya O.V. Analiz vozmozhnostej metodov teoreticheskoj dozimetrii v ocenke biologicheskogo dejstviya i terapevticheskogo primeneniya nizkochastotnyh elektromagnitnyh polej // Biomedicinskaya radioelektronika. 2014. № 12. S. 12–16.
- Pavlov A.N. Biofizicheskij mekhanizm rezonansnyh processov v vode pri elektromagnitnom vozdejstvii // Biomedicinskaya radioelektronika. 2018. № 11. S. 70–73.
- Petrosyan V.I., Gulyaev V.I., ZHiteneva E.A., Elkin V.A., Sinicyn N.I. Vzaimodejstvie fizicheskih i biologicheskih ob"ek-tov s elektromagnitnym izlucheniem KVCH-diapazona // Radiotekhnika i elektronika. 1995. T. 40. № 1. S. 127–134.
- Pavlov A.N. Mekhanizm energoinformacionnyh processov v vodosoderzhashchih sredah organizma cheloveka pri elektromagnit-nom vozdejstvii radiodiapazona // Biomedicinskaya radioelektronika. 2017. № 12. S. 18–22.
- Pavlov A.N., Novichkov S.A. Bioenergoinformacionnoe sostoyanie vodnoj sostavlyayushchej organizma cheloveka, opredelyayushchee process zhiznedeyatel'nosti // Tekhnologiya zhivyh sistem. 2016. T. 13. № 1. S. 74–79.
- Krasnobryzhev V.G., Kurik M.V. Kvantovye effekty v prirodnoj vode // Kvantovaya magiya. 2010. T. 7. Vyp. 4. S. 4132–4138.
- Frohlich H., Kremer F. Coherent Excitations in Biological Systems. Springer–Verlag. Berlin. 1985.
- Bessonova A.P., Stas' I.E. Vliyanie vysokochastotnogo elektromagnitnogo polya na fiziko-himicheskie svojstva vody i ee spektral'nye harakteristiki // Polzunovskij vestnik. 2008. № 3. S. 305–309.
- Han V.A., Vlasov V.A., Myshkin V.F. i dr. Issledovanie vliyaniya elektromagnitnyh polej na strukturu i svojstva vody // Nauchnyj zhurnal KubGAU. 2012. № 8(7). S. 1–13.
- Priluckij V.I., Bahir V.M. Elektroaktivirovannaya voda. Anomal'nye svojstva, mekhanizm biologicheskogo dejstviya// Trudi VNIIIMT. M.: Izd. Ekran. 1997. S. 228.
- Gudkov S.V., Karn O.E., Garmash S.A. i dr. Obrazovanie aktivnyh form kisliroda v vode pod dejstviem vidimogo i infra-krasnogo izluchenij v polosah pogloshcheniya molekulyarnogo kisloroda // Biofizika. 2012. T. 57. Vyp. 1. S. 5–13.