350 rub
Journal Biomedical Radioelectronics №3 for 2019 г.
Article in number:
The role of cholinergic neurotransmitter system in support of the brain activity during vibration impact
Type of article: scientific article
DOI: 10.18127/j15604136-201903-05
UDC: 612.886+612.014
Authors:

S.M. Minasyan – Dr.Sc. (Biol.), Professor, Liading Research Scientist, Department of Yuman and Animals Physiology, Faculty of Biology, Erevan State University (Armenia)

E.S. Gevorkyan – Ph.D. (Biol.), Associate Professor, Research Scientist, Department of Human and Animals Physiology, Faculty of Biology, Erevan State University (Armenia) 

E-mail: Esgevorkyan@yandex.ru 

Ts.I. Adamyan – Ph. D. (Biol.), Associate Professor, Senior Research Scientist, Department of Human and Animals Physisology, Faculty of Biology, Erevan State University (Armenia) 

E-mail: Tsovinar.Adamyan@ysu.am 

L. Ed. Ghukasyan – Ph. D. (Biol.), Researcher, Research Group of the Department of Physiology  at the Institute of Biology, Faculty of Biology, Erevan State University (Armenia)

Abstract:

With the aim of neuro-pharmacological analysis of the rising impacts of mesodiencephalic activating system in vibration conditions we have studied the effect of central M-anticholinergic drug amizylum on specific thalamo-cortical (TC) and non-specific hypothalamo-cortical (HC) induced potentials (IP). Registration of IP was carried out befor and after injection of amizylum in conditions of vibration impact. Intravenous and intracerebral injection of the preparation was used. On the backround of slow “amizilum” waves the changes of induced responses of core on thalamus relay core and posterior hypothalamic core were observed. Meanwhile, the latent periods and duration of positive and negative phases of IP do not change reliably and the amplitudes of primary components of the responses increase. In conditions of the TC IP amplitude increasing, induced by amizylum, a shortterm vibration (30 min) does not relevantly affect the amplitude-time parameters of the induced responses. Though, after threehour vibration combined with amizylum some enhancement of TC IP amplitude was observed as compared to isolated effect of vibration. The obtained data indicate that the character of the IP change in different phases of vibration is pre-determined by complicated interaction of activating and inhibiting systems of cerebrum.

Pages: 42-46
References
  1. Artamonova V.G., Muhin N.A. Professional'nye bolezni. M.: Medicina. 2004. 480 s.
  2. Artamonova V.G., SHatalov V.V. Professional'nye bolezni. M.: Medicina. 2008. 254 s.
  3. Rankova V.A., Kuleshova M.V., Katamanova G.M., Kartapol'ceva N.V. Vliyanie vibracii na funkcional'nuyu aktivnost' nervnoj sistemy u zhivotnyh v eksperimente // Byulleten' Vostochno-Sibirskogo nauch. centra SO RAMN. 2013. № 3. S. 113–117.
  4. Bodnenkova G.M., Lizarev A.V. Patogennaya rol' narushenij immunnoj reaktivnosti v mekhanizmah, opredelyayushchih vzaimosvyaz' gipotalamusgipofiz-adrenalovoj i tiroidnoj sistem pri vibracionnoj bolezni // Medicina truda i promyshlennaya ekologiya. 2005. T. 12. S. 25–27.
  5. Affleck V.S., Coote J.H., Pyner S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience. 2012. V. 6. № 219. P. 48–61. https://doi.org/10.1016/j.neuroscience.2012.05.070.
  6. Hajdarov A.K. Vliyanie holino-adrenergicheskih veshchestv na elektricheskuyu aktivnost' gipotalamusa i sensomotornoj kory: Diss. … k.b.n. Dushambe. 2000. 121 s.
  7. Kosarev V.V., Babanov S.A. Professional'nye bolezni. M.: GEOTAR-media. 2010. 348 s. 
  8. Lowrie M. Vestibular disease: anatomy, physiology and clinical signs // Compend. Contin. Educ. Vet. 2012. V. 34. № 7. P. 1–5.
  9. Buresh YA., Petren' M., Zahar I. Elektrofiziologicheskie metody issledovaniya. M. 1962. 455 s. 
  10. Baklavadzhyan O.G. Viscerosomaticheskie afferentnye sistemy gipotalamusa. L.: Nauka. 1985. 236 s.
  11. Pyykko I., Starck J. Combined effect of noise, vibration and visual fi eld stimulation on electrical brain activity and optomotor responses. Int. Arch. Occup. Environ // Health. 1985. V. 56. № 2. P. 147–159.
  12. Katamanova Е.V., Lihman O.L., Nurbaeva D.ZH., Kartapol'ceva N.V., Sudakova N.G. Osobennosti bioelektricheskoj aktivnosti mozga pri vozdejstvii na organizm vibracii // Medicina truda i promyshlennaya ekologiya. 2009. № 9. S. 19–22.
  13. Krebs A.A., Filippov I.V., Pugachev K.S., Zyuzin Е.V., Maslyukov P.M. Vliyanie nejromodulyatornyh centrov na sverhmedlennuyu bioelektricheskuyu aktivnost' pervichnyh korkovyh otdelov sensornyh sistem golovnogo mozga // Sensornye sistemy. 2015. T. 29. № 2. S. 163–178.
  14. Okada A., Ariizumi M., Okamoto G. Changes in cerebral norepinephrine induced by vibration or noise stress // Eur. J. Physiol. Occup. Physiol. 1983.  V 52. № 1. P. 94–97. 
  15. Hermes M., Coderre E., Buijs R., Renaud L. GABA and glutamate mediate rapid neurotransmission from the suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat // Physiol. 1996. V. 496. P. 749–757.
Date of receipt: 20 марта 2019 г.