350 rub
Journal Biomedical Radioelectronics №2 for 2019 г.
Article in number:
Remote interactions of physical systems is a consequence of the quantum entanglement formation of coherent water domains
Type of article: scientific article
DOI: 10.18127/j15604136-201902-07
UDC: 577.344; 544.431.7; 57.045
Authors:

S.N. Novikov – Ph. D. (Eng.), Leader Research Scientist, Institute nano- and the microsystem equipment,

National Research University of Electronic Technology (MIET) (Moscow, Zelenograd) E-mail: aviary@mail.ru

A.I. Ermolaeva – Ph. D. (Eng.), Associate Professor, Institute nano- and the microsystem equipment,

National Research University of Electronic Technology (MIET) (Moscow, Zelenograd) 

V.A. Zhigalov – Ph. D. (Eng.), Engineer, Institute nano- and the microsystem equipment,

National Research University of Electronic Technology (MIET) (Moscow, Zelenograd) E-mail: zhigalov@gmail.com

N.E. Korobova – Dr. Sc. (Chem.), Professor, Leader Research Scientist, Institute nano- and the microsystem equipment National Research University of Electronic Technology (MIET) (Moscow, Zelenograd)  E-mail: korobova3@mail.ru

Abstract:

The special properties and structure of water, its role in the interaction of physical and biological systems constantly causes new theoretical and experimental studies. Numerous works are devoted to the issues of remote interaction of solids and liquids, while water is in the center of attention, since its structure in the liquid state, consisting (according to modern concepts) of the classical network of hydrogen bonds and quantum formations - coherent domains - represents a typical case of two-level systems. This allows us to consider the dynamics using the concepts of quantum physics.

The aim of the research was to clarify the mechanism of physical systems interaction at considerable distances, i.e. their remote or nonlocal influence. The cases observed in the experiments: in biology (interaction of bacteria), chemistry (heterogeneous catalysis), and medicines (neuropsychology) still do not have a convincing theoretical explanation. Modern highly sensitive research methods allow obtaining new data in this area. The measurement results (thermo-gravimetry, electron work function) of the quantum water structure part (the number of coherent domains), obtained by remote action (the "lids" method) on H2O surfaces of various nature (glass, silicon, track polymeric membranes) with laser (λ = 645 nm) and millimeter radiation have been discussed. 

This paper is an attempt to explain the phenomenon of remote interaction of physical systems containing water from the position of quantum physics. Based on the obtained results and literature data, it was suggested that the remote (non-local) interactions of all physical systems are the result of the quantum entangled states formation between the coherent water domains belonging to these systems.

Pages: 63-82
References
  1. Ibragimov H.I., Korol'kov V.A. Rabota vyhoda ehlektrona v fiziko-himicheskih issledovaniyah. M.: Internet Inzhiniring. 2002. S. 32.
  2. Wells R.L., Fort T. Adsorption of water on clean gold by measurement of work function changes // Surf. Sci. 1972. V. 32. № 3. P. 543–552.
  3. Vernadskij V.I. Himicheskoe stroenie biosfery Zemli i ee okruzheniya. M.: Nauka. 2001. S. 53.
  4. Arani R., Bono I., Del Giudice E., et al. QED Coherence and the Thermodynamics of water // Int. Jour. of Mod. Phys. B. 1995.V. 9. № 15. P. 1813–1841.
  5. Pershin S.M. Kvantovye otlichiya orto- i para- spinovyh izomerov H2O kak fizicheskaya osnova anomal'nyh svojstv vody // Nanostruktury. Matematicheskaya fizika i modelirovanie. 2012. T. 7. № 2. S. 103–120.
  6. Novikov S.N., Ermolaeva A.I., Timoshenkov S.P. i dr. Vliyanie nadmolekulyarnoj struktury vody na kinetiku izotermicheskogo ispareniya poverhnostnogo sloya. CH. 3. Biomedicinskaya radioehlektronika. 2012. № 8. S. 29–36.
  7. Novikov S.N., Timoshenkov S.P., Goryunova E.P. i dr. Usilenie ehffekta SHottki v sisteme Si(100)-voda s pomoshch'yu polimernyh poristyh trekovyh membran // ZHurnal fizicheskoj himii. 2016. T. 90. № 4. S. 616–621.
  8. YAroslavcev A.B. i dr. Membrany i membrannye tekhnologii / otv. red. A.B. YAroslavcev. M.: Nauchnyj mir. 2013. S. 126–168.
  9. Novikov S.N., Ermolaeva A.I., Goryunova E.P. i dr. Distancionnoe kataliticheskoe vozdejstvie poverhnosti tverdyh tel na process dekogerencii vody // ZHurnal fizicheskoj himii. 2017. T. 91. № 7. S. 1111–1116.
  10. Kuznecov V.V. Mnogochastichnaya kvantovaya zaputannost' – «proryvnoe» napravlenie v nauke. http://www.vvkuz.ru/books/p1101.pdf
  11. Hu H., Wu M. Evidence of Non-Local Physical, Chemical and Biological Effects Supports Quantum Brain // NeuroQuantology. 2006. V. 4. № 4. P. 291–306.
  12. Rassadkin YU.P. Voda obyknovennaya i neobyknovennaya. M.: Galereya STO. 2008. S. 365–487.
  13. Hu H., Wu M. Spin-Mediated Consciousness Theory: An Approach Based On Pan-Protopsychism. // Medical Hypotheses. 2004. V. 63. № 4. P. 633–646.
  14. Julsgaard B., Kozhekin A., Polzik E. Experimental long-lived entanglement of two macroscopic objects // Nature. 2001. V. 43. P. 400–403.
  15. EHtkin V.A. Mozhno li priznat' sushchestvovanie ehfira bez model'nyh predstavlenij o nem? // ZHurnal formiruyushchihsya napravlenij nauki. 2015.  № 7(3). S. 97–104.
Date of receipt: 15 января 2019 г.