350 rub
Journal Biomedical Radioelectronics №2 for 2019 г.
Article in number:
Correction of shielding-induced disturbances of the infradian rhythmicity of thermonociception in snails with exogenous melatonin
Type of article: scientific article
DOI: 10.18127/j15604136-201902-06
UDC: 577.35:594.38
Authors:

N.A. Temuryants  – Dr.Sc. (Biol.) (1945–2018)

K.N. Tumanyants – Ph.D. (Biol.), Director, V.I. Vernadsky Crimean Federal University (Simpheropol) E-mail: tumanyantsk@gmail.com

A.S. Kostyuk – Ph.D. (Biol.), Assistant, Kiev National University n.a. Taras Shevchenko E-mail: timur328@gmail.com

N.S. Yarmolyuk – Ph.D. (Biol.), Associate Professor, V.I. Vernadsky Crimean Federal University (Simpheropol) E-mail: timur328@gmail.com

Abstract:

The goal of the work was to study the infradian rhythmicity of the pain threshold (PT) and the latent period (LP) of the thermal stimulus avoidance in snails Helix albescens in desynchronosis and the influence of exogenous melatonin on it.

The desynchronosis was modeled by ferromagnetic shielding. A 2×2×3m room, constructed of a double-layer Dynamo steel, served as a shielding chamber. Inside the chamber for frequencies from 10-4 to 30 Hz the shielding factor was within three-four, at industrial frequency 50 Hz and multiple harmonics 150 and 250 Hz – about three. At frequencies above 1 MHz there is a slight weakening. The shielding factor for the static component of magnetic field constituted: in the vertical constituent – 4.4 times, in the horizontal – 20 times. The inside of the chamber could be completely dark.

Pain perception was assessed based upon the PT and the LP during a “hot plate” test for the 21-day experiments. Our “hot plate” was constructed from glass with the bottom surface spray-painted (in vacuum) with titanium nitride.

For the statistical processing of data, a package of specialized "MedStat" programs was used. Mathematical processing of the physiological time-series data was carried out with the help of cosinor-analysis.

We found a rhythmic component in the dynamics of the studied parameters. Cosinor-analysis of the changes in PT and LP showed a set of infradian rhythms, including ones with the following periods: ≈2d,l; ≈2d,9; ≈3d,5; ≈7d,l. Power spectra of PT and LP overlapped completely.

It is found that the rhythmic processes of the infradian range are smoothed in the shield-induced desynchronosis: the number of detectable periods decreases, their amplitude decreases, and the phases shift.

The daily administration of melatonin during the shielding at the dose of 1 mg per kg prevents the development of the infradian rhythmicity disturbances of thermonociception. In this case, the number of periods in the spectrum is equal to that group of the control animals, there is no decrease in the amplitudes of the selected rhythms, but the phase shift in the coinciding periods does not normalize.

It is concluded that melatonin corrects the infradian rhythmicity in desynchronosis, normalizes the state of temporary organization.

Pages: 56-62
References
  1. Vladimirskij B.M., Sidyakin V.G., Temur'yanc N.A. i dr. Kosmos i biologicheskie ritmy. Simferopol'. 1995. 206 s.
  2. Reiter R.J. The melatonin rhythm: both a clock and a calendar // Experientia. 1993. V. 15. № 49 (8). P. 654–664.
  3. Erren T.C., Reiter R.J. Melatonin: a universal time messenger // Neuro Endocrinol. Lett. 2015. V. 36. № 3. P. 187–192.
  4. Tan D.-X., Zheng X., Kong J., Lucien C. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions // Int. J. Mol. Sci. 2014. V. 15. № 9. 15858–15890.
  5. Wittmann M., Dinich J., Merrow M., Roenneberg T. Social jetlag: misalignment of biological and social time // Chronobiol. Int. 2006. V. 23. № 1–2. P. 497–509.
  6. Zee P.S., Attarian H., Videnovic A. Circadian rhythm abnormalities // Continuum: Lifelong. Learning In Neurology. 2013. V. 19.  № 1. P. 132–147.
  7. Temur'yanc N.A. Kostyuk A.S., Tumanyanc K.N. Dinamika i infradiannaya ritmika temperaturnoj/bolevoj chuvstvitel'nosti mollyuska Helix v usloviyah vozdejstviya ehlektromagnitnyh polej // Nejrofiziologiya. 2010. T. 42 (4). S. 329–339.
  8. Temur'yanc N.A., CHuyan E.N., Kostyuk A.S. i dr. EHffekty slabyh ehlektromagnitnyh vozdejstvij u bespozvonochnyh zhivotnyh (regeneraciya planarij, nocicepciya mollyuskov). Simferopol': DIAJPI. 2012. 302 s.
  9. Temur'yanc N.A., Kostyuk A.S., Tumanyanc K.N. Uchastie melatonina v izmenenii nocicepcii mollyuskov i myshej pri dlitel'nom ehlektromagnitnom ehkranirovanii // Rossijskij fiziologicheskij zhurnal imeni I.M. Sechenova. 2013. T. 99 (11). S. 1333–1341. 
  10. Patent 48094. Pristrij reєstraciї parametriv bol'ovoї chutlivosti nazemnih molyuskiv / N.A. Temur’yanc, V.G. Vishnevs'kij, O.S. Kostyuk, V.B. Makєєv. 2010. 
  11. Emel'yanov I.P. Formy kolebaniya v bioritmologii. Novosibirsk: Nauka. 1976. 127 s.
  12. Martynyuk V.S., Temur'yanc N.A. Magnitnye polya krajne nizkoj chastoty kak faktor modulyacii i sinhronizacii infradiannyh bioritmov u zhivotnyh // Geofizicheskie processy i biosfera. 2009. T. 8 (1). S. 36–50.
  13. Arushanyan EH.B. Universal'nye terapevticheskie vozmozhnosti melatonina // Klinicheskaya medicina. 2013. T. 91(2). S. 4–8.
  14. Kostoglou-Athanassion I. Therapeutic applications of melatonin // Ther. Adv. Endocrinol. Metab. 2013. V. 4. № 1. P. 13–24.
  15. Malhotra S., Sawhneyy G., Pandhi P. The therapeutic potential of melatonin: a review of the science // MedGenMed. 2004. V. 6. № 2. P. 46.
  16. Opie L.H., Lecour S. Melatonin has multiorgan effects // Eur. Heart. J. Cardiovasc. Pharmacother. 2016. V. 2. P. 258–265.
Date of receipt: 8 ноября 2018 г.