350 rub
Journal Biomedical Radioelectronics №8 for 2018 г.
Article in number:
Algorithmization of the magnetic-induction research and its implementation in the programming environment LabVIEW
Type of article: scientific article
UDC: 621.317.421
Authors:

A.A. Zhilnikov
Engineer, Department «Information-measuring and biomedical engineering», Ryazan State Radio Engineering University
E-mail: ark9876@mail.ru
T.A. Zhilnikov
Ph.D. (Eng.), Associate Professor, Department «Mathematics and information technology management»,
Academy of the Federal Penitentiary Service of Russia (Ryazan)
E-mail: quadrus02@mail.ru
V.I. Zhulev
Dr. Sc. (Eng.), Professor, Head of Department «Information-measuring and biomedical engineering»,
Ryazan State Radio Engineering University; Honored Worker of Higher School of Russian Federation,
Laureate of the Ryazan Region on Science and Technology and the Silver Medal n.a. Academician V.F. Utkin
E-mail: zhulev.v.i@rsreu.ru

Abstract:

Today, the most common noninvasive methods of research are NMR and computed tomography, as well as in some cases ultrasound. As an alternative solution to the problems of detection of hidden foreign inclusions, a method of magnetoinductive research (MIR) is proposed. This method allows to determine the spatial position of inclusions having ferromagnetic properties.

The principles of MIR of bodies having ferromagnetic properties are based on the induction method for determining the assessment of the tangential component of magnetic induction differentiated in the chosen direction, supplemented by the algorithm of reconstruction based on the inverse projection with preliminary filtration of linear projections р of the redistributed magnetic flux density of an initially homogeneous magnetic field Ф, as a result of its interaction with ferromagnetic bodies inside biological objects.

In this work, in the form of a complete calculation algorithm, the mathematical apparatus was developed, with the accompanying development of the necessary software in the LabVIEW environment.

The differentiation present in the algorithm assumes the presence of the variable differentiation s, and, therefore, the direction, which in the course of reconstruction is understood as the so-called viewing angle . The complete picture of the spatial arrangement of the boundaries of the media section is presented after combining the images at different viewing angles .

In particular, the results of the reconstruction of the model boundary are included inside the biological object in the plane for different viewing angles . The comparative analysis of the correspondence of the sample inclusion geometry obtained as a result of the MIR method to the original geometry showed that the relative error of the sample spatial boundaries did not exceed 10%.

Pages: 26-32
References
  1. Patent № 2490659 (RF), MPK G01R33/00. Sposob nerazrushayushchego ob"emnogo izmereniya vektornoj funkcii magnitnoj indukcii neodnorodno raspredelennogo v prostranstve i periodicheski izmenyayushchegosya vo vremeni magnitnogo polya / A.A. ZHil'nikov, T.A. ZHil'nikov, V.I. ZHulev. 2013.
  2. ZHil'nikov A.A., ZHil'nikov T.A., ZHulev V.I. Razrabotka i fizicheskoe obosnovanie realizacii informacionno-izmeritel'noj sistemy magnitoindukcionnogo issledovaniya biologicheskih ob"ektov // Biomedicinskaya radioehlektronika. 2015. № 5. S. 14–20.
  3. ZHil'nikov A.A., ZHil'nikov T.A., ZHulev V.I. Prakticheskaya realizaciya sistemy neinvazivnogo magnitoindukcionnogo issledovaniya biologicheskih ob"ektov // Biomedicinskaya radioehlektronika. 2016. № 6. S. 27–37.
  4. ZHil'nikov A.A., ZHil'nikov T.A., ZHulev V.I. Kvazistacionarnaya model' opisaniya magnitnogo polya pri realizacii sposoba magnitoindukcionnogo issledovaniya ferromagnitnyh tel vnutri ob"ektov // Inzhenernaya fizika. 2017. № 9. S. 33–39.
  5. ZHil'nikov A.A., ZHil'nikov T.A., ZHulev V.I. Modelirovanie sposoba nerazrushayushchego magnitoindukcionnogo issledovaniya dlya polucheniya izobrazheniya geometrii vnutrennej struktury ferromagnitnyh izdelij // Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2014. Vyp. 50. № 4. CH. II. S. 47–50.
  6. ZHil'nikov A.A., ZHil'nikov T.A., ZHulev V.I. Vychislitel'noe modelirovanie procedury primeneniya sposoba magnitoindukcionnogo issledovaniya dlya analiza formy skrytyh magnitnyh inorodnyh vklyuchenij vnutri biologicheskih ob"ektov // Biomedicinskaya radioehlektronika. 2014. № 7. S. 33–43.
  7. Govorkov V.A. EHlektricheskie i magnitnye polya. M.: Svyaz'izdat. 1951. 341 s.
  8. Svidetel'stvo № 2014662872 o gosudarstvennoj registracii programm dlya EHVM. Sposob nerazrushayushchego magnitoindukcionnogo issledovaniya, pozvolyayushchego poluchat' izobrazhenie geometrii vnutrennej struktury ferromagnitnyh izdelij / A.A. ZHil'nikov, T.A. ZHil'nikov, V.I. ZHulev, M.B. Kaplan. 2014.
Date of receipt: 23 мая 2018 г