350 rub
Journal Biomedical Radioelectronics №4 for 2017 г.
Article in number:
The modern view of the humidity conditions of building envelopes with a high level of energy saving
Authors:
K.P. Zubarev Post-graduate Student, National Research University Moscow State University of Civil Engineering, Moscow E-mail: zubarevkirill93@mail.ru
Abstract:
This review article describes the most significant works of recent years on the humidity conditions of building envelopes. Three main aspects of the problem are considered. The first of them - this is the effect of electromagnetic radiation on human life and health. Are the most effective means of protecting human from electromagnetic radiation of a modern building. The physical effect of the passage of the electromagnetic signal through the walling confirmed experimentally. Practical recommendations for the weakening of the electromagnetic signal. The paper reveals the relationship between the power of the electromagnetic signal, entering the house and humidity building envelope. The second problem - the water vapor permeability of building materials. We studied the latest developments in the field of water vapor permeability of materials walling. A comparative analysis of modern methods of testing water vapor permeability of building materials used in the official regulations, the latest tests on the new domestic equipment. These advantages determine the water vapor permeability when exposed to the wind flow on the sample in comparison with the classical methods of determining the vapor permeability. A qualitative assessment of new installations and methods for the determination of the water vapor resistance. The questions of determination of water vapor permeability of building materials. Explore new approaches to determine the water vapor permeability of composite systems facade insulation with outer layers of plaster. This paper analyzes the domestic and foreign techniques for the calculation of operational humidity of the building and operating of thermal conductivity. It is concluded that the technique of field inspections of buildings is the most accurate of all, but not very cost competitive. Defining operational sorption isotherms humidity tests positive only for single layer construction structures and can not be applied to the determination of the production of multi-layer moisture. The method of linear dependence of the thermal conductivity of the material from moisture. As an example of the opposite method of the linear dependence of the thermal conductivity of the moisture is given a nonlinear technique additives for heat insulation of expanded polystyrene. A closer look at a modern method of calculating operational humidity of building materials, depending on the "quality of heating rate." The method of the European Union on the definition of operational humidity. Comparison of the data for the calculation of the results of the EU method with Russian modern techniques. As described in the most promising method of mathematical modeling to determine the operational humidity by means of numerical calculations. Arguments are presented the advantages of this method compared to the other six. It is indicated that current new developments in the field of moisture conditions of building structures in other countries, too, are based on mathematical modeling of processes of heat transfer and moisture transfer. The shown are the basic principles of calculation for each of the methods. Noting their strengths and weaknesses. Suggested further ways of development for research humidity conditions. Also shown on the need to integrate communication and humidity conditions to protect a person from electromagnetic radiation.
Pages: 25-33
References

 

  1. Gagarin V.G., Kozlov V.V. Perspektivy povyshenija ehnergeticheskojj ehffektivnosti zhilykh zdanijj v Rossii // Vestnik MGSU. 2011. № 3-1. S. 192-200.
  2. Gagarin V.G., Kozlov V.V. O normirovanii teplozashhity i trebovanijakh raskhoda ehnergii na otoplenie i ventiljaciju v proekte aktualizirovannojj redakcii SNiP «Teplovaja zashhita zdanijj». // Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. Ser. Stroitelstvo i arkhitektura. 2013. № 31-2 (50). S. 468-474.
  3. SHafigullin R.I., Kuprijanov V.N. EHkologicheskaja bezopasnost gorodskojj sredy pri vozdejjstvii ehlektromagnitnykh polejj // Izvestija Kazanskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. 2015. № 1. S. 171-181.
  4. Kuprijanov V.N., Morozov O.G., Nasybullin A.R., SHafigullin R.I. K issledovaniju oslablenija ehlektromagnitnykh voln ograzhdajushhimi konstrukcijami zdanijj // Privolzhskijj nauchnyjj zhurnal. 2016. № 1(37). S. 38-45.
  5. Anikanova L.A., Volkova O.V., KHutornojj A.N., Doroshenko L.O., Kurmangalieva A.I. Issledovanija paropronicaemosti rastvorov iz sukhikh stroitelnykh smesejj // Vestnik TGASU. 2016. № 3. S. 146-155.
  6. GOST 28575-2014 Zashhita ot korrozii v stroitelstve. Konstrukcii betonnye i zhelezobetonnye. Ispytanija paropronicaemosti zashhitnykh pokrytijj M.: Standartinform. 2015. 11 s.
  7. GOST 25898-2012 Materialy i izdelija stroitelnye. Metody opredelenija paropronicaemosti i soprotivlenija paropronicaniju. M.: Standartinform. 2014. 15 s.
  8. GOST EN 12086-2011 Izdelija teploizoljacionnye, primenjaemye v stroitelstve. Metod opredelenija kharakteristik paropronicaemosti. M.: Standartinform. 2013. 19 s.
  9. Gagarin V.G., Pastushkov P.P. Metodika opredelenija summarnogo soprotivlenija paropronicaniju naruzhnykh otdelochnykh sloev fasadnykh teploizoljacionnykh kompozicionnykh sistem s naruzhnymi shtukaturnymi slojami // Vestnik MGSU. 2012. № 11. S. 140-143.
  10. Samojjlov A.A. Vlijanie otdelochnojj sistemy Baumit effecto na vlazhnostnyjj rezhim kladki iz avtoklavnogo gazobetona // Stroitelnye materialy, oborudovanie, tekhnologii XXI veka. 2014. № 2(181). S. 39-41.
  11. Kuprijanov V.N., Petrov A.S. Vlazhnostnoe sostojanie ograzhdajushhikh konstrukcijj s uchetom peremennogo znachenija paropronicaemosti materialov // Stroitelnye materialy. 2016. № 6. S. 40-43.
  12. Petrov A.S., Kuprijanov V.N. Peremennoe znachenie paropronicaemosti materialov v uslovijakh ehkspluatacii i ego vlijanie na prognozirovanie vlazhnostnogo sostojanija ograzhdajushhikh konstrukcijj // Academia. Arkhitektura i stroitelstvo. 2016. № 2. S. 97-105.
  13. Chi Feng, Qinglin Meng, Ya Feng, Hans Janssen. Influence of pre -conditioning methods on the cup test results // 6 th International Building Physics Conference. 2015. V. 78.  R. 1383-1388.
  14. Patent № 128718 (RF). Ustrojjstvo dlja izmerenija paropronicaemosti stroitelnykh materialov / V.N. Kuprijanov, A.S. Petrov.
  15. Murgula V., Pukhkalb V. Saving the Architectural Appearance of the Historical Buildings due to Heat Insulation of their External Walls // International Scientific Conference Ur­ban Civil Engineering and Municipal Facilities, SPb­UCE­MF-2015. ProcediaEngineering. 2015. № 117. P. 891-899.
  16. Gagarin V.G., Pastushkov P.P. Opredelenie raschetnojj vlazhnosti stroitelnykh materialov // Promyshlennoe i grazhdanskoe stroitelstvo. 2015. № 8. S. 28-33.
  17. Knzel H. Gasbeton. Wdrme-und Feuchtigkeitsverhalten. Wiesbaden, Berlin: Bauverlag. 1970. 120 s.
  18. Fokin K.F. Stroitelnaja teplotekhnika ograzhdajushhikh chastejj zdanijj / Pod red. JU.A. TabunshhikovaV.G. Gagarina. M.: AVOK-PRESS. 2006. 256 s.
  19. Gagarin V.G., Pastushkov P.P., Reutova N.A. K voprosu o naznachenii raschetnojj vlazhnosti stroitelnykh materialov po izoterme sorbcii // Stroitelstvo i rekonstrukcija. 2015. № 4(60). S. 152-155.
  20. Franchuk A.U. Teploprovodnost stroitelnykh materialov v zavisimosti ot vlazhnosti. M.-L. Gosstrojjizdat, 1941. 108 s.
  21. Gnip I., Kershulis V., Vejalis S. Teploprovodnost penopolistirolnykh plit v zavisimosti ot uvlazhnenija. // Energetica. 2002. № 3. S. 67-72.
  22. Pastushkov P.P. Vlijanie vlazhnostnogo rezhima og­razh­dajushhikh konstrukcijj s naruzhnymi shtukaturnymi slo­jami na ehnergoehffektivnost teploizoljacionnykh materialov: Avtoref. diss. - kand. tekhn. nauk. M. 2013. 169 s.
  23. ISO 10456:2007 (E) Building materials and products. Hygrothermal properties. Tabulated design values and procedures for determining declared and design thermal values.
  24. Gorshkov A.S., Sokolov N.A. Nesootvetstvie rossijjskikh i mezhdunarodnykh standartov pri opredelenii raschetnykh znachenijj teploprovodnosti stroitelnykh materialov i izdelijj // Inzhenerno-stroitelnyjj zhurnal. 2013. № 7(42). S. 7-14.
  25. Sokolov N.A., Gorshkov A.S. Teploprovodnost stroitelnykh materialov i izdelijj: uroven garmonizacii rossijjskikh i evropejjskikh stroitelnykh standartov // Stroitelnye materialy, oborudovanie, tekhnologii XXI veka. 2014. № 6(185). S. 27-31.
  26. Jin H.Q., Yao X.L., Fan L.W., Xu X., Yu Z.T. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content // International Journal of Heat and Mass Transfer. 2016. № 92. P. 589-602.
  27. Campanale M., Moro L. Autoclaved aerated concrete: Experimental evaluation of its thermal properties at high temperatures // High Temperatures-High Pressures. 2015. № 44(5). P. 369-382.
  28. Rubene S., Vilnitis M., Noviks J. Frequency Analysis and Measurements of Moisture Content of AAC Masonry Constructions by EIS // Procedia Engineering. 2015.  № 123. P. 471-478.
  29. Koudelka T., Kruis J., Maděra J. Coupled shrinkage and damage analysis of autoclaved aerated concrete // Applied Mathematics and Computation. 2015. № 267. P. 427-435.
  30. Kočí V., Maděra J., Černý R. Exterior thermal insulation systems for AAC building envelopes: Computational analysis aimed at increasing service life // Energy and Buildings. 2012. № 47. P. 84-90.