350 rub
Journal Biomedical Radioelectronics №4 for 2017 г.
Article in number:
Electrostatic model of influence of high-frequency electromagnetic radiation on ion transport through membrane-s channel
Authors:
A.G. Shein - Dr.Sc. (Phys.-Math.), Professor, Department of Physics, Volgograd State Technical University E-mail: professor39@mail.ru D.A. Baryshev - Ph.D. (Phys.-Math.), Department of Physics, Volgograd State Technical University E-mail: graf.d@bk.ru D.I. Stepanenko - Post-graduate Student, Department of Physics, Volgograd State Technical University E-mail: di-stepanenko@yandex.ru
Abstract:
The aim of this study was to study the physiological response at the molecular level of the organization of biological systems to irradiation with electromagnetic waves in the terahertz frequencies nitrogen oxide 150,176-150,664 GHz and 129.0 GHz atmospheric oxygen. Molecular spectroscopy, in particular fluorescence 2.5% albumin solution, produced in the single-beam fluorescent spectrometer «LS 55 Fluorescence Spectrometer», PerkinElmer company (USA). Used fluorescence mode, the spectral width of the slit 15 nm × 15 nm, scan speed 500 nm / min., The excitation luminescence spectra were recorded at 420 nm in the spectral analysis was carried out in the wavelength range 250-320 nm. Irradiation with 2.5% albumin was performed with electromagnetic waves at frequencies 150,176-150,664 nitrous oxide and atmospheric oxygen GHz 129.0 GHz. In the case of emitter «NO» a power density of 0.2 mW / cm2, and using a transducer "O2" - 100 mW / cm2. For exposure of 2.5% albumin solution, a medical device for terahertz therapy "Orbit". Irradiation of an aqueous 2.5% human albumin solution with electromagnetic waves at a frequency of 129.0 GHz atmospheric oxygen for 30 minutes, following spectral changes were found. Effects: changes in the shape of the spectra changes only the amplitude. Excitation: also changes only the amplitude bands, it can be connected, including a change in the environment of tryptophan (tryptophan residues) due to changes in the structure of the globules. In this case, changing the degree of luminescence quenching. By fluorescence spectroscopy showed that the 30-minute exposure to 2.5% aqueous solution of the protein albumin terahertz waves at frequencies nitrogen oxide 150,176-150,664 GHz band in the excitation spectra are observed three bands: phenylalanine (258 nm), tyrosine (275 nm) and tryptophan (297 nm). Since the recorded luminescence of tryptophan residues (420 nm), which contributes to excitation energy transfer from phenylalanine and tyrosine to tryptophan, the change in the ratio of the amplitudes of excitation bands indicates a change in the efficiency of energy transfer. In turn, this is due to a change in the spatial configuration of the protein globules under the influence of radiation. Increased bandwidth of 275 nm indicates a decrease in the distance tyrosine-tryptophan. The overall increase in the amplitude of the bands may be caused by a decrease in luminescence quenching due to, for example, reduce water ingress in the luminescence region. Thus, at the molecular level causing said wave registered with molecular (fluorescence) spectroscopy, the changes in the spatial configuration of the molecules of biopolymers, particularly proteins albumin. These changes in the molecules of biopolymers due to likely rotational transitions that are induced by terahertz waves.
Pages: 14-19
References

 

  1. Beckijj O.V., Kozmin A.S., JAremenko JU.G. Vozmozhnye primenenija teragercevykh voln // Biomedicinskaja radioehlektronika. 2008. № 3.  S. 48-54.
  2. Fedorov V.I. Novye dostizhenija v izuchenii biologicheskojj ehffektivnosti ehlektromagnitnogo izluchenija submillimetrovojj chasti teragercevogo diapazona // Millimetrovye volny v biologii i medicine. 2011. № 3. S. 5-17.
  3. Kirichuk V.F., Cymbal A.A., Antipova O.N. Korrekcija ostrykh stresszavisimykh narushenijj sistemy gemostaza s pomoshhju apparata KVCH-NO // Medicinskaja tekhnika. 2006. № 1. S. 29-33.
  4. Kirichuk V.F., Cymbal A.A. Zakonomernosti i mekhanizmy biologicheskogo dejjstvija ehlektromagnitnykh voln teragercevogo diapazona. Saratov: Izd-vo SGMU. 2015. 291 s.
  5. Beckijj O.V., Lebedeva N.N. Sovremennye predstavlenija o mekhanizmakh vozdejjstvija nizkointensivnykh millimetrovykh voln na biologicheskie obekty // Millimetrovye volny v biologii i medicine. 2001. № 3.  S. 5-19.
  6. KHabarova O.V. Bioehffektivnye chastoty i ikh svjaz s sobstvennymi chastotami zhivykh organizmov // Biomedicinskie tekhnologii i radioehlektronika. 2002. № 5. S. 56-66.
  7. Kirichuk V.F., Cymbal A.A. Vlijanie teragercovogo izluchenija na chastote atmosfernogo kisloroda 129,0 GGc na koncentraciju nitritov v krovi pri raznykh vidakh ehksperimentalnogo stressa na fone vvedenija neselektivnogo ingibitora konstitutivnykh izoform NO-sintaz // Bjulleten ehksperimentalnojj biologii i mediciny. 2011. № 10. S. 416-419.
  8. Kirichuk V.F., Cymbal A.A. Izmenenie belkovogo spektra krovi, aktivnosti glutation-S-transferazy, koncentracii gljukozy i ceruloplazmina pri vozdejjstvii teragercevymi volnami na chastotakh oksida azota 150,176-150,664 GGc pri ostrom stresse // Biomedicinskaja radioehlektronika. 2011. № 8. S. 30-35.
  9. Fjodorov V.I. Issledovanie biologicheskikh ehffektov ehlektromagnitnogo izluchenija submillimetrovojj chasti teragercevogo diapazona // Biomedicinskaja radioehlektronika. 2011. № 2. S. 17-27.
  10. Fjodorov V.I. Klassifikacija otklikov biologicheskikh sistem razlichnogo urovnja organizacii na ehlektromagnitnoe izluchenie submillimetrovojj chasti teragercovogo diapazona // Millimetrovye volny v biologii i medicine. 2010. № 2. S. 25-35.
  11. Fjodorov V.I., Nemova E.F., Dulceva G.G. Teragercovoe izluchenie iniciiruet konformacionnyjj perekhod v molekule albumina: rol kisloroda // Millimetrovye volny v biologii i medicine. 2011. № 3. S. 42-44.
  12. Fjodorov V.I., Pogodin A.S., Bespalov V.G. Vlijanie impulsnogo sverkhshirokopolosnogo teragercevogo izluchenija na konformaciju albumina // Millimetrovye volny v biologii i medicine. 2009. № 3. S. 50-58.