350 rub
Journal Biomedical Radioelectronics №3 for 2017 г.
Article in number:
Vasoprotective mechanisms of action of electromagnetic radiation of extremely high frequency in chronic hypokinetic stress
Authors:
E.N. Chuyan - Dr.Sc. (Biol.), Department of Biology and Chemistry Faculty, Human and Animal Physiology and Biophysics, V.I. Vernadsky Crimean Federal University, Taurida Academy, Simferopol, Russia E-mail: m-ravaeva@rambler.ru M.Yu. Ravaeva - Ph.D. (Biol.), Department of Biology and Chemistry Faculty, Human and Animal Physiology and Biophysics, V.I. Vernadsky Crimean Federal University, Taurida Academy, Simferopol, Russia E-mail: m-ravaeva@rambler.ru
Abstract:
The research is aimed at studying the action of electromagnetic radiation (EMR) is extremely high frequency (EHF) on microhemodynamics animals in hypokinetic conditions (HC) stress. Study was carried out on 80 white male rats of Vistar line which were divided into two groups of 20 rats each. The first group consisted of rats in the control group (C) are in standard vivarium conditions, second group - animals exposed to experimental stress reaction (HC), 3 th group - the animals are exposed to 10 times the short-wave exposure, and the animals of the fourth group subjected to the combined effect of the Civil Code and the EHF EMR (HA + EHF). special cupboards made of plexiglass 140 × (60 × 60 mm) were used to create HC stress conditions, consisting of 5 cells. As described canisters animals were 10 days and 20 hours a day, during the remaining 4 hours was carried out feeding and care of animals, EHF-effects (for EHF and HC groups of animals + EHF), the registration of the microcirculation. The study was conducted parameters of blood microcirculation by laser Doppler flowmetry with a laser analyzer \"LAK-02\" of blood flow in the second embodiment (production of NPP \"Lazma\", Russia) for 6 minutes at 1, 3, 5, 7, 10 day of the experiment. EHF-effects was carried out using a single-channel generator \"EHF. RAMED. EXPERT-01 \"(the working wavelength of 7.1 mm, power density radiation of 0.1 mW / cm2). The results of this study showed that long-term restriction of mobility (10 times hypokinesia) led to a violation of the regulation of tissue microcirculation at all levels, which was reflected in the development of vasoconstriction, impaired blood inflow and outflow, and the dominance of shunt blood flow, reducing the number of functioning capillaries. Evidence of this is to reduce the oscillator and Nonoscillation microcirculation. The opposite dynamics of indicators of microcirculation in rats developed with EHF-impact, and the effect increased with increasing multiplicity of application of this physical factor. When short-wave exposure in animals there was a significant change in the activity of all components of the regulation of microvascular tone, which was reflected in an increase in NO production by the endothelium, reducing peripheral resistance, increase blood flow in the microvasculature Nutritional, improved venular outflow, which generally reflected the increase in perfusion. Action EHF EMR on animals that were in long-term restriction of mobility, led to a leveling of vasoconstriction caused by prolonged restriction of movement and normalization of microcirculatory processes. It should be noted that, since the third day of hypokinesia at EHF exposure was observed approaching microcirculation to those in the control group, and from 5 th day of the experiment of a significant increase in comparison with those in the control group of animals. The results of this study shows that 10 times with EHF-effects eliminates stress-induced disorders microhemodynamics and has anti-stress effect, which was reflected in the increased metabolic activity of the endothelium, increasing the number of functioning precapillaries by reducing the activity of the sympathetic adrenergic vasomotors, increase perfusion and modulation of tissue microcirculation by compared with those in the group of animals living under the isolated hypokinesia.
Pages: 55-65
References

 

  1. CHujan E.N., Tribrat N.S., Ananchenko M.N., Ravaeva M.JU. Mekhanizmy dejjstvija nizkointensivnogo millimetrovogo izluchenija na tkanevuju mikrogemodinamiku. Sim­feropol: Inform.-izd. otdel TNU im. V.I. Vernadskogo. 2011. 324 c.
  2. Beckijj O.V., Kislov N.N., Lebedeva V.V. Millimetrovye volny i zhivye sistemy. M.: SAJJNS-PRESS. 2004. 107 s.
  3. Pakhomov A.G., Prol U.K., Mathur S.P., Ak\'el Y., Camp-belt C.B.C. Search for frequency-specific effects of millimeter-wave radiation on isolated nerve function // Bioelectromagnetics. 1997. V. l8. P. 324-334.
  4. CHujan E.N., Drevetnjak N.A., Bogdanova O.D., Ravaeva M.JU., Tribrat N.S. Tipologicheskie osobennosti mikro­cirkuljacii zhivotnykh // Uchenye zapiski Tavricheskogo nacionalnogo universiteta im. V.I. Vernadskogo Ser. Biologija, khimija. 2012. T. 25(3). S. 222-239.
  5. Krupatkin A.I., Sidorov V.V. Lazernaja dopplerovskaja floumetrija mikrocirkuljacii krovi. M.: Medicina. 2005. 254 s.
  6. Kozlov V.I. Metod lazernojj dopplerovskojj floumetrii: Posobie dlja vrachejj. M.: Medicina. 2001. 128 s.
  7. Kozlov V.I. Sistema mikrocirkuljacii krovi: kliniko-morfologicheskie aspekty izuchenija // Regionarnoe krovoobrashhenie i mikrocirkuljacija. 2006. T. 5(1).  S. 84-101.
  8. Schmid-Schonbein H., Ziege S., Grebe R. Synergetic interpretation of patterned vasomotor activity in microvascular perfusion: descrete effects of myogenic and neurogenic vasoconstriction as well as arterial and venous pressure fluctuations // Int. J. Microcir. 1997. № 17. R. 346-359.
  9. Krupatkin A.I. Vlijanie simpaticheskojj innervacii na tonus mikrososudov i kolebanija krovotoka kozhi // Fiziologija cheloveka. 2006. T. 32. № 5. S. 95-106.
  10. Hoffman U., Yanar A., Bolinger A. The freaquency histogram - A new method for the evaluation of Laser Doppler Flux Motion // Microvascul. Res. 1990. V.40. P. 293-301.
  11. Makolkin V.I., Branko V.V., Bogdanova Є.A. Metod lazernojj dopplerovskojj floumetrii v kardiologii: Posobie dlja vrachejj. M.: Rosselkhozakademija. 1999. 48 s.
  12. Kryzhanovskijj G.N. Osnovy obshhejj patofiziologii. M.: MIA. 2011. 240 c.
  13. Kovalenko E.A., Gurovskijj N.N. Gipokinezija. M.: Medicina. 1980. 124 c.
  14. CHujan E.N. Nejjroіmunoendokrinnі mekhanіzmi adaptacії do dії nizko іntensivnogo elektromagnіtnogo vipromіnjuvannja nadto visokoї chastoti: Avtoref. dis - dokt. bіol. nauk. Kiїv. 2004. 40 s.
  15. Kirichuk V.F., Volin M.V., Krenickijj A.P., Majjborodin A.V., Tupikin V.D. Trombocity v reakcijakh sistemy gemostaza na KVCH-vozdejjstvie. Saratov: Izd-vo Saratovskogo med. un-ta. 2002. 190 s.
  16. Bondarenko O.N., Bondarenko N.A., Malyshev I.JU., Ma­nukhina E.B. Antistressornyjj ehffekt oksida azota // Izvestija RAN. Ser. Biologija. 2001. № 4. S. 459-466.
  17. Macko M.A. Sootnoshenie nekotorykh mediatorov stress­realizujushhikh i stresslimitirujushhikh sistem v ostrom periode ishemicheskogo insulta // Patologicheskaja fiziologija i ehksperimentalnaja terapija. 2004. № 4. S. 14-16.
  18. Plotnikoff N.P., Faith R., Murgo A.J., et al. Enkephalins and Endorphins // Plenum Press «Stress and the Immune System». New York. 1986. P. 67.
  19. Pshennikova M.G., Popkova E.V., Bondarenko N.A., Malyshev I.A., SHimkovich M.V., Smirin B.V., Manukhina E.B. Katekholaminy, oksid azota i ustojjchivost k stressornym povrezhdenijam: vlijanie adaptacii k gipoksii // Rossijjskijj fiziologicheskijj zhurnal im. I.M. Sechenova. 2002. T. 88. № 4. S. 485-494.
  20. Bredt D.S., Snider S.H. Nitric oxide: physiologic messenger molecule // Annu. Rev. Biochem. 1994. V. 63. P. 175-195.
  21. Malyshev I.JU., Manukhina E.B. Stress, adaptacija i oksid azota // Biokhimija. 1998. T. 63. № 7. S. 992-1006.
  22. CHujan E.N., Ravaeva M.JU. Rol katekholaminov v reguljacii tkanevogo krovotoka pri dejjstvii nizkointensivnogo ehlektromagnitnogo izluchenija krajjne vysokojj chastoty // Problemy sovremennojj nauki i obrazovanija. 2014. № 4(22). S. 13-18.
  23. CHujan E.N., Ravaeva M.JU. Rol serotonina v reguljacii tkanevogo krovotoka pri dejjstvii nizkointensivnogo ehlektromagnitnogo izluchenija krajjne vysokojj chastoty // Problemy sovremennojj nauki i obrazovanija. 2014. № 8(26). S. 14-19.
  24. CHertok V.M., Kocjuba A.E. Oksid azota v mekhanizmakh afferentnojj innervacii arterijj golovnogo mozga // Citologija. 2010. T. 52. Vyp. 1. S. 24-29.
  25. CHujan E.N., Nikiforov I.R., Ravaeva M.JU., Birjukova E.A., Bogdanova O.D. Izmenenie pokazatelejj variabelnosti serdechnogo ritma pod vlijaniem nizkointensivnogo millimetrovogo izluchenija // Fizika zhivogo. 2009. T. 17. № 2. S. 206-213.
  26. Rybalko S.JU., Kacev A.I., Bisjuk JU.A., Gorlov A.A., CHirskijj N.V. Nizkointensivnoe EHMI KVCH diapazona uskorjaet SOEH i izmenjaet agregaciju ehritrocitov cheloveka // Tavricheskijj mediko-biologicheskijj vestnik. 2002. T. 5. № 4. S. 124-127.