350 rub
Journal Biomedical Radioelectronics №2 for 2017 г.
Article in number:
Artificial nerve
Authors:
A.V. Savelyev Senior Research Scientist, Deputy Editor in Chief of the Journal «Neurocomputers: development, application», Director of the Patent agency «©Uniquely honest patenting», Scientific coordinator of the permanent seminar «Neyrophylo-sophy» of the Moscow State University by M.V. Lomonosov, Moscow E-mail: gmkristo@rambler.ru
Abstract:
In the paper the results of a detailed original propagation neural network modeling spikes as the electrochemical phenomena in myelinated axons in the amount of axon are presented. A hypothesis about electromagnetic genesis of myelin sheaths is proposed and its possible mechanism is justify. We investigated the possible biological substrates this effects and number of the neuromodels are developed by the author reflecting the nature of the interaction of the electromagnetic field spike with oligodendrogliomas and Schwann-s cells was offered. On this basis, we developed the physical model of artificial nerve, it direct and conceptual using may be very important in understanding the development and treatment of neuropathologies, including Alzheimer's and Parkinson's diseases. In this part of the paper, further results of differential and cross-sectional modeling neurological spike, the results contribution of the discrete generation spike in its eddies are shown. Also, based on these results, data analytical and conceptual modeling retraction of myelin and the interaction of electromagnetic fields with oligodendroglioma are obtained. The results of new studies of previously unknown causes and the fundamental laws of neurophysiological dynamics of myelination of the nervous tissue, and human morphogenetic rearrangements myelin sheaths, including their genesis, retraction and maintaining a stable state. Laws are due to thin, features previously not taken into account the actual processes of propagation of nerve impulses along the axons of neurons, with electro-bio-сhemistries mechanisms determining the specificity of the spiral structure of myelin sheaths of axons. It will be of great importance for the diagnosis, prevention, treatment of degenerative diseases of the nervous system and effective rehabilitation after suffering illnesses, injuries, etc., as well as to develop new drugs, physiotherapy techniques and equipment. This work was supported financially by RFH in grant № 15-03-00519а «Post-non-classic paradigm of artificial intellect».
Pages: 57-65
References

 

  1. 150 let «Refleksam golovnogo mozga» // Sb. nauchnykh trudov jubilejjnogo simpoziuma, posvjashhennogo izdaniju stati I.M. Sechenova (kollektivnaja nauchnaja monografija) // Otv. redaktory: A.JU. Alekseev, JU.JU. Petrunin, A.V. Savelev, E.A. JAnkovskaja. M.: IIntell. 2014. S. 204-219. http://www.aintell.info/elib/17.pdf
  2. Savelev A.V. Nejjrokompjutery i obshhestvo // Nejjrokompjutery: razrabotka, primenenie. 2015. № 7. S. 3-14. http://www.radiotec.ru/catalog.php-cat=jr7&itm=2015-7
  3. Vsemirnyjj bank proteinov: http://www.ebi.ac.uk/pdbe/
  4. Petrov F.P., Lapickijj D.A. Polnoe vosstanovlenie parabioticheskogo nerva anodom // Novoe v refleksologii i fiziologii nervnojj sistemy. 1929. T. 3. S. 84.
  5. Petrov F.P. Dejjstvie ehlektromagnitnogo polja na izolirovannye organy // Fiziko-khimicheskie osnovy vysshejj nervnojj dejatelnosti. L. 1935. S. 97.
  6. Petrov F.P. O dejjstvii postojannogo toka na centralnuju nervnuju sistemu // Trudy Instituta mozga im. V.M. Bekhtereva. 1937. T. 7. S. 50.
  7. KHlopin N.G. Rost i prevrashhenija vne organizma tkanevykh ehlementov perifericheskikh nervov // Arkhiv anatomii, gistologii i ehmbriologii. 1940. T. 23. № 1-2. S. 171.
  8. Vasilev L.L. Acetilkholin i ehlektrotok // Trudy Gos. instituta mozga im. V.M. Bekhtereva. 1941. T. 14. S. 5-20.
  9. Nasonov D.N., Rozental D.L. Ob ehlektricheskom mekhanizme rasprostranenija povrezhdenija v poperechnopolosatykh myshechnykh voloknakh // ZHurnal obshhejj biologii. 1947. T. 281. Vyp. VIII. S. 401-415.
  10. Bibikova A.F. Demielinizacija centralnykh nervnykh volokon, vyzvannaja obshhim vozdejjstviem na organizm ionizirujushhejj radiacii // Arkhiv patologii. 1959.  T. 21. № 5.
  11. Daniel J.M. and others. Prolonged myelination in human neocortical evolution // PNAS. 2012. October 9. V. 109. № 4.  P. 16480-16485; http://www.pnas.org/content/109/41/16480. full.pdf+html-sid=905bc0e1-5ddd-477e-8286-1b12a9d06aca
  12. Rash J.E., Vanderpool K.G., Yasumura T., Hickman J., Beatty J.T., Nagy J.I. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction //Journal of neurophysiology. 2016. V. 115. № 4. P. 1836-1859.
  13. Savelev A.V. Nejjroehkzistencialnoe modelirovanie rasprostranenija spajjkov - put k novojj koncepcii substrata dolgovremennojj nejjronnojj pamjati // Recenziruemyjj zhurnal VAK Ukrainy Iskusstvennyjj intellekt. Doneck: NAN Ukrainy. 2009. № 3. C. 411-425. http://dspace.nbuv.gov. ua:8080/handle/123456789/8103.
  14. Savelev A.V. Otkrytie vikhrejj v nervnojj sisteme // Materialy mezhdunarodnojj nauchnojj konferencii, Moskva: KHosta. Sochi. 2009. C. 204-222.
  15. Savelev A.V. Osobennosti ehlektrokhimicheskogo vikhrevogo rasprostranenija spajjkov v aksonalnojj sisteme nejjronov // Biomedicinskaja radioehlektronika. 2012. № 8. C. 46-55. http://www.radiotec.ru/catalog.php-cat= jr6&art=11369.
  16. Wake H., Philip Lee P.R., Fields D.R. Control of Local Protein Synthesis and Initial Events in Myelination by Action Potentials // Science, 16 September 2011. V. 333. (6049). P. 1647-1651.
  17. Yusipovich A.I. et al. Laser interference microscopy: a novel approach to the visualization of structural changes in myelin during the propagation of nerve impulses // Laser Physics Letters. 2016. V. 13. № 8. P. 085601.
  18. Hamilton N.B. et al. Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length //Glia. 2017. V. 65. № 2. P. 309-321.
  19. Patent № 2254884 (RF). Sposob lechenija perifericheskogo nerva / V.G. Ninel, R.P. Gorshkov, G.A. Korshunova, D.K. Dzhumagishiev. SarNIITO MZ RF. 2005.
  20. Patent № 2401074 (RF). Sposob uskorenija regeneracii nerva pri ego povrezhdenii / V.I. CHissov i dr.
  21. Lu P. Stem cell transplantation for spinal cord injury repair // Progress in Brain Research. 2017. http://dx.doi.org/10. 1016/bs.pbr.2016.11.012
  22. Patent № 2494712 (RF). Sposob lechenija atrofii zritelnogo nerva razlichnojj ehtiologii / JU.A. Belyjj, A.V. Tereshhenko, A.A. Temnov, S.A. Mirgorodskaja.
  23. Fields R. D., Stevens-Graham B. New insights into neuron-glia communication // Science. 2002. V. 298. № 5593. P. 556-562.
  24. Maldonado H. et al. Astrocyte-to-neuron communication through integrin-engaged Thy-1/CBP/Csk/Src complex triggers neurite retraction via the RhoA/ROCK pathway // Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2017. V. 1864. № 2. P. 243-254.
  25. Patent № 1306368 (SU). Ustrojjstvo dlja modelirovanija nejjrona // T.A. Mezheckaja, A.V. Savelev, A.A. Kolesnikov.
  26. Wnek G.E. Perspective: Do macromolecules play a role in the mechanisms of nerve stimulation and nervous transmission - // Journal of Polymer Science Part B: Polymer Physics. 2016. V. 54. № 1. P. 7-14.
  27. Werner H.B. On the evolution of myelin // Brain Research. 2016. V. 1641. Part A. P. 1-3.
  28. Savelev A.V. Nejjrologicheskie aspekty kletochnojj nejjromatematiki // Iskusstvennyjj intellekt. Doneck: NAN Ukrainy. 2008. № 4. P. 125-141. http://iai.donetsk.ua