350 rub
Journal Biomedical Radioelectronics №2 for 2017 г.
Article in number:
fMRT ultrafast sequence for study the human brain cogni-tive functions
Authors:
V.L. Ushakov - Ph.D. (Biol.), Leading Research Scientist, Cognitive Brain Function Neurovisualisation of Kurchatov-s Complex of NBICS-Technologies, National Research Centre "Kurchatov institute", Moscow E-mail: tiuq@yandex.ru V.A. Orlov - Post-graduate Student, Research-Engineer, Laboratory of Cognitive Brain Function Neurovisualisation of Kurchatov-s Complex of NBICS-Technologies, National Research Centre "Kurchatov institute", Moscow E-mail: ptica89@bk.ru V.V. Zinchenko Research-Engineer, Laboratory of Cognitive Brain Function Neurovisualisation of Kurchatov-s Complex of NBICS-Technologies, National Research Centre "Kurchatov institute", Moscow E-mail: z1315@mail.ru S.I. Kartashov - Post-graduate Student, Research-Engineer, Laboratory of Cognitive Brain Function Neurovisualisation of Kurchatov-s complex of NBICS-Technologies, National Research Centre "Kurchatov institute", Moscow E-mail: sikartashov@gmail.com B.M. Velichkovsky - Dr. Sc. (Psychol.), Head of Department of Neurocognitive and Socio-Humanitarian Sciences of Kurchatov-s Complex of NBICS-Technologies, National Research Centre "Kurchatov institute", Moscow E-mail: velich@applied-cognition.org
Abstract:
In this paper we compared the motor functions localization in the human brain using the analysis of fMRI data obtained by the standard (TR = 2 s) and ultra (TR = 0.3 s) fMRI sequence. The study involved 14 healthy volunteers between the ages of 19 to 24 (average age 21.5). Magnetom Verio 3T (Siemens, Germany) with 32-channel head coil was used for MRI data acquisition. fMRI protocol for ultrafast sequence was obtained from the University of Minnesota Center for Magnetic Resonance Research. The experiment consisted of 3 different sessions: 1. Standard EPI-based protocol for functional data acquisition (TR = 2000 ms, TE = 20 msec, slices 42, voxel size 2x2x2 mm) in the block paradigm (3 blocks of 10 s of right hand finger tapping). 2. Ultrafast protocol for functional data acquisition (TR = 300 ms, TE = 25 ms, 42 slice, the size of the voxel 2x2x2 mm) in the same paradigm (3 blocks of 10 s of right hand finger tapping). 3. Ultrafast protocol with the same parameters for event-related paradigm (2 times rapid right hand grip into a fist, 8 repetitions lasting 1 s and 10,5 s of rest between iterance). Shown, that the standard and ultrafast fMRI protocols have a high level of compliance with the published results for brain activity (corresponding to sensomotor functions) spatial localization. This opens up the possibility of using selected ultra-fast sequence for obtaining high spatial or temporal resolution of fMRI data in subsequent neurocognitive studies. It could be extremely useful for super-fast neuro interfaces with the high spatial resolution development namely for event-related designed experiments and with simultaneously recording of fMRI, EEG, verbal and tactile responses as well as the eye-tracking data.
Pages: 52-56
References

 

  1. Logothetis N.K., Pauls J., Augath M., Trinath T., Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal // Nature. 2001. V. 412. P. 150-157.
  2. Heeger D.J., Ress D. What does fMRI tell us about neuronal activity - // Nature. 2002. V. 3. P. 142-151.
  3. Logothetis N.K. What we can do and what we cannot do with fMRI - // Nature. 2008. V. 453. P. 869-878.
  4. Feinberg D.A., Moeller S., Smith S.M., Auerbach E., Ramanna S. et al. Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging // PLoS ONE. 2010. V. 5(12). R. e15710. doi:10.1371/journal. pone.0015710.
  5. Feinberg D.A., Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging // J. Magn. Reson. 2013. April. V. 229. P. 90-100. doi:10.1016/j.jmr. 2013.02.002.
  6. Xu J., Moeller S., Auerbach E., Strupp J., Smith S.M., Feinberg D.A., Yacoub E., Uğurbil K. Evaluation of slice accelerations using multiband echo planar imaging at 3 T // NeuroImage. 2013. V. 83. P. 991-1001.
  7. Lotze M., Montoya P., Erb M., Hlsmann E., Flor H., Klose U., Birbaumer N., Grodd W. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study // J. Cogn. Neurosci. 1999.  V. 11(5). P. 491-501.
  8. Grefkes C., Eickhoff S.B., Nowak D.A., Dafotakis M., Fink G.R. Dynamic intra and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM // Neuroimage. 2008. V. 41(4). P. 1382-1394.
  9. Sedov A.S., Devetjarov D.A., Semenova JU.N., Zavjalova V.V., Ushakov V.L., Medvednik R.S., Ublinskijj M.V., Semenova N.A. fMRT issledovanie dinamiki reakcijj mozga cheloveka pri realizacii slovesno-oposredovannogo proizvolnogo dvizhenija // ZHurnal vysshejj nervnojj dejatelnosti im. I.P. Pavlova. 2015. T. 65. № 4. S. 436-445. DOI: 10.7868/S0044467715040115.
  10. Wardman D.L., Gandevia S.C., Colebatch J.G. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study // Physiol. Rep. 2014. V. 2(4). P. e00270.